// SPDX-License-Identifier: GPL-2.0-only // // Copyright(c) 2021-2022 Intel Corporation. All rights reserved. // // Author: Cezary Rojewski // #include #include #include #include "cldma.h" #include "registers.h" /* Stream Registers */ #define AZX_CL_SD_BASE 0x80 #define AZX_SD_CTL_STRM_MASK GENMASK(23, 20) #define AZX_SD_CTL_STRM(s) (((s)->stream_tag << 20) & AZX_SD_CTL_STRM_MASK) #define AZX_SD_BDLPL_BDLPLBA_MASK GENMASK(31, 7) #define AZX_SD_BDLPL_BDLPLBA(lb) ((lb) & AZX_SD_BDLPL_BDLPLBA_MASK) /* Software Position Based FIFO Capability Registers */ #define AZX_CL_SPBFCS 0x20 #define AZX_REG_CL_SPBFCTL (AZX_CL_SPBFCS + 0x4) #define AZX_REG_CL_SD_SPIB (AZX_CL_SPBFCS + 0x8) #define AVS_CL_OP_INTERVAL_US 3 #define AVS_CL_OP_TIMEOUT_US 300 #define AVS_CL_IOC_TIMEOUT_MS 300 #define AVS_CL_STREAM_INDEX 0 struct hda_cldma { struct device *dev; struct hdac_bus *bus; void __iomem *dsp_ba; unsigned int buffer_size; unsigned int num_periods; unsigned int stream_tag; void __iomem *sd_addr; struct snd_dma_buffer dmab_data; struct snd_dma_buffer dmab_bdl; struct delayed_work memcpy_work; struct completion completion; /* runtime */ void *position; unsigned int remaining; unsigned int sd_status; }; static void cldma_memcpy_work(struct work_struct *work); struct hda_cldma code_loader = { .stream_tag = AVS_CL_STREAM_INDEX + 1, .memcpy_work = __DELAYED_WORK_INITIALIZER(code_loader.memcpy_work, cldma_memcpy_work, 0), .completion = COMPLETION_INITIALIZER(code_loader.completion), }; void hda_cldma_fill(struct hda_cldma *cl) { unsigned int size, offset; if (cl->remaining > cl->buffer_size) size = cl->buffer_size; else size = cl->remaining; offset = snd_hdac_stream_readl(cl, CL_SD_SPIB); if (offset + size > cl->buffer_size) { unsigned int ss; ss = cl->buffer_size - offset; memcpy(cl->dmab_data.area + offset, cl->position, ss); offset = 0; size -= ss; cl->position += ss; cl->remaining -= ss; } memcpy(cl->dmab_data.area + offset, cl->position, size); cl->position += size; cl->remaining -= size; snd_hdac_stream_writel(cl, CL_SD_SPIB, offset + size); } static void cldma_memcpy_work(struct work_struct *work) { struct hda_cldma *cl = container_of(work, struct hda_cldma, memcpy_work.work); int ret; ret = hda_cldma_start(cl); if (ret < 0) { dev_err(cl->dev, "cldma set RUN failed: %d\n", ret); return; } while (true) { ret = wait_for_completion_timeout(&cl->completion, msecs_to_jiffies(AVS_CL_IOC_TIMEOUT_MS)); if (!ret) { dev_err(cl->dev, "cldma IOC timeout\n"); break; } if (!(cl->sd_status & SD_INT_COMPLETE)) { dev_err(cl->dev, "cldma transfer error, SD status: 0x%08x\n", cl->sd_status); break; } if (!cl->remaining) break; reinit_completion(&cl->completion); hda_cldma_fill(cl); /* enable CLDMA interrupt */ snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA, AVS_ADSP_ADSPIC_CLDMA); } } void hda_cldma_transfer(struct hda_cldma *cl, unsigned long start_delay) { if (!cl->remaining) return; reinit_completion(&cl->completion); /* fill buffer with the first chunk before scheduling run */ hda_cldma_fill(cl); schedule_delayed_work(&cl->memcpy_work, start_delay); } int hda_cldma_start(struct hda_cldma *cl) { unsigned int reg; /* enable interrupts */ snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA, AVS_ADSP_ADSPIC_CLDMA); snd_hdac_stream_updateb(cl, SD_CTL, SD_INT_MASK | SD_CTL_DMA_START, SD_INT_MASK | SD_CTL_DMA_START); /* await DMA engine start */ return snd_hdac_stream_readb_poll(cl, SD_CTL, reg, reg & SD_CTL_DMA_START, AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US); } int hda_cldma_stop(struct hda_cldma *cl) { unsigned int reg; int ret; /* disable interrupts */ snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA, 0); snd_hdac_stream_updateb(cl, SD_CTL, SD_INT_MASK | SD_CTL_DMA_START, 0); /* await DMA engine stop */ ret = snd_hdac_stream_readb_poll(cl, SD_CTL, reg, !(reg & SD_CTL_DMA_START), AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US); cancel_delayed_work_sync(&cl->memcpy_work); return ret; } int hda_cldma_reset(struct hda_cldma *cl) { unsigned int reg; int ret; ret = hda_cldma_stop(cl); if (ret < 0) { dev_err(cl->dev, "cldma stop failed: %d\n", ret); return ret; } snd_hdac_stream_updateb(cl, SD_CTL, SD_CTL_STREAM_RESET, SD_CTL_STREAM_RESET); ret = snd_hdac_stream_readb_poll(cl, SD_CTL, reg, (reg & SD_CTL_STREAM_RESET), AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US); if (ret < 0) { dev_err(cl->dev, "cldma set SRST failed: %d\n", ret); return ret; } snd_hdac_stream_updateb(cl, SD_CTL, SD_CTL_STREAM_RESET, 0); ret = snd_hdac_stream_readb_poll(cl, SD_CTL, reg, !(reg & SD_CTL_STREAM_RESET), AVS_CL_OP_INTERVAL_US, AVS_CL_OP_TIMEOUT_US); if (ret < 0) { dev_err(cl->dev, "cldma unset SRST failed: %d\n", ret); return ret; } return 0; } void hda_cldma_set_data(struct hda_cldma *cl, void *data, unsigned int size) { /* setup runtime */ cl->position = data; cl->remaining = size; } static void cldma_setup_bdle(struct hda_cldma *cl, u32 bdle_size) { struct snd_dma_buffer *dmab = &cl->dmab_data; __le32 *bdl = (__le32 *)cl->dmab_bdl.area; int remaining = cl->buffer_size; int offset = 0; cl->num_periods = 0; while (remaining > 0) { phys_addr_t addr; int chunk; addr = snd_sgbuf_get_addr(dmab, offset); bdl[0] = cpu_to_le32(lower_32_bits(addr)); bdl[1] = cpu_to_le32(upper_32_bits(addr)); chunk = snd_sgbuf_get_chunk_size(dmab, offset, bdle_size); bdl[2] = cpu_to_le32(chunk); remaining -= chunk; /* set IOC only for the last entry */ bdl[3] = (remaining > 0) ? 0 : cpu_to_le32(0x01); bdl += 4; offset += chunk; cl->num_periods++; } } void hda_cldma_setup(struct hda_cldma *cl) { dma_addr_t bdl_addr = cl->dmab_bdl.addr; cldma_setup_bdle(cl, cl->buffer_size / 2); snd_hdac_stream_writel(cl, SD_BDLPL, AZX_SD_BDLPL_BDLPLBA(lower_32_bits(bdl_addr))); snd_hdac_stream_writel(cl, SD_BDLPU, upper_32_bits(bdl_addr)); snd_hdac_stream_writel(cl, SD_CBL, cl->buffer_size); snd_hdac_stream_writeb(cl, SD_LVI, cl->num_periods - 1); snd_hdac_stream_updatel(cl, SD_CTL, AZX_SD_CTL_STRM_MASK, AZX_SD_CTL_STRM(cl)); /* enable spib */ snd_hdac_stream_writel(cl, CL_SPBFCTL, 1); } static irqreturn_t cldma_irq_handler(int irq, void *dev_id) { struct hda_cldma *cl = dev_id; u32 adspis; adspis = snd_hdac_adsp_readl(cl, AVS_ADSP_REG_ADSPIS); if (adspis == UINT_MAX) return IRQ_NONE; if (!(adspis & AVS_ADSP_ADSPIS_CLDMA)) return IRQ_NONE; cl->sd_status = snd_hdac_stream_readb(cl, SD_STS); dev_warn(cl->dev, "%s sd_status: 0x%08x\n", __func__, cl->sd_status); /* disable CLDMA interrupt */ snd_hdac_adsp_updatel(cl, AVS_ADSP_REG_ADSPIC, AVS_ADSP_ADSPIC_CLDMA, 0); complete(&cl->completion); return IRQ_HANDLED; } int hda_cldma_init(struct hda_cldma *cl, struct hdac_bus *bus, void __iomem *dsp_ba, unsigned int buffer_size) { struct pci_dev *pci = to_pci_dev(bus->dev); int ret; ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV_SG, bus->dev, buffer_size, &cl->dmab_data); if (ret < 0) return ret; ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, bus->dev, BDL_SIZE, &cl->dmab_bdl); if (ret < 0) goto alloc_err; cl->dev = bus->dev; cl->bus = bus; cl->dsp_ba = dsp_ba; cl->buffer_size = buffer_size; cl->sd_addr = dsp_ba + AZX_CL_SD_BASE; ret = pci_request_irq(pci, 0, cldma_irq_handler, NULL, cl, "CLDMA"); if (ret < 0) { dev_err(cl->dev, "Failed to request CLDMA IRQ handler: %d\n", ret); goto req_err; } return 0; req_err: snd_dma_free_pages(&cl->dmab_bdl); alloc_err: snd_dma_free_pages(&cl->dmab_data); return ret; } void hda_cldma_free(struct hda_cldma *cl) { struct pci_dev *pci = to_pci_dev(cl->dev); pci_free_irq(pci, 0, cl); snd_dma_free_pages(&cl->dmab_data); snd_dma_free_pages(&cl->dmab_bdl); }