aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAndy Polyakov <appro@openssl.org>2010-05-23 12:37:01 +0000
committerAndy Polyakov <appro@openssl.org>2010-05-23 12:37:01 +0000
commit07e29c1234177899aceec350cf6db3dbdc60beef (patch)
tree7c3632ba4c20601017134e0e2abc78432f0f8004
parentfb2d5a91e990e6ee95e09b48ca420039867da37c (diff)
downloadopenssl-07e29c1234177899aceec350cf6db3dbdc60beef.tar.gz
ghash-x86.pl: MMX optimization (+20-40%) and commentary update.
-rw-r--r--crypto/modes/asm/ghash-x86.pl171
1 files changed, 89 insertions, 82 deletions
diff --git a/crypto/modes/asm/ghash-x86.pl b/crypto/modes/asm/ghash-x86.pl
index c21664e53c..d74c33713a 100644
--- a/crypto/modes/asm/ghash-x86.pl
+++ b/crypto/modes/asm/ghash-x86.pl
@@ -7,7 +7,7 @@
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
-# March 2010
+# March, May 2010
#
# The module implements "4-bit" GCM GHASH function and underlying
# single multiplication operation in GF(2^128). "4-bit" means that it
@@ -20,10 +20,10 @@
# gcc 2.95.3(*) MMX assembler x86 assembler
#
# Pentium 100/112(**) - 50
-# PIII 63 /77 16 24
-# P4 96 /122 30 84(***)
-# Opteron 50 /71 21 30
-# Core2 54 /68 12.5 18
+# PIII 63 /77 14.5 24
+# P4 96 /122 24.5 84(***)
+# Opteron 50 /71 14.5 30
+# Core2 54 /68 10.5 18
#
# (*) gcc 3.4.x was observed to generate few percent slower code,
# which is one of reasons why 2.95.3 results were chosen,
@@ -33,9 +33,10 @@
# position-independent;
# (***) see comment in non-MMX routine for further details;
#
-# To summarize, it's >2-3 times faster than gcc-generated code. To
+# To summarize, it's >2-4 times faster than gcc-generated code. To
# anchor it to something else SHA1 assembler processes one byte in
-# 11-13 cycles on contemporary x86 cores.
+# 11-13 cycles on contemporary x86 cores. As for choice of MMX in
+# particular, see comment at the end of the file...
# May 2010
#
@@ -317,17 +318,24 @@ if (!$x86only) {{{
&static_label("rem_4bit");
-sub mmx_loop() {
-# MMX version performs 2.8 times better on P4 (see comment in non-MMX
-# routine for further details), 40% better on Opteron and Core2, 50%
-# better on PIII... In other words effort is considered to be well
-# spent...
- my $inp = shift;
- my $rem_4bit = shift;
- my $cnt = $Zhh;
+&function_begin_B("_mmx_gmult_4bit_inner");
+# MMX version performs 3.5 times better on P4 (see comment in non-MMX
+# routine for further details), 100% better on Opteron, ~70% better
+# on Core2 and PIII... In other words effort is considered to be well
+# spent... Since initial release the loop was unrolled in order to
+# "liberate" register previously used as loop counter. Instead it's
+# used to optimize critical path in 'Z.hi ^= rem_4bit[Z.lo&0xf]'.
+# The path involves move of Z.lo from MMX to integer register,
+# effective address calculation and finally merge of value to Z.hi.
+# Reference to rem_4bit is scheduled so late that I had to >>4
+# rem_4bit elements. This resulted in 20-45% procent improvement
+# on contemporary µ-archs.
+{
+ my $cnt;
+ my $rem_4bit = "eax";
+ my @rem = ($Zhh,$Zll);
my $nhi = $Zhl;
my $nlo = $Zlh;
- my $rem = $Zll;
my ($Zlo,$Zhi) = ("mm0","mm1");
my $tmp = "mm2";
@@ -335,80 +343,52 @@ sub mmx_loop() {
&xor ($nlo,$nlo); # avoid partial register stalls on PIII
&mov ($nhi,$Zll);
&mov (&LB($nlo),&LB($nhi));
- &mov ($cnt,14);
&shl (&LB($nlo),4);
&and ($nhi,0xf0);
&movq ($Zlo,&QWP(8,$Htbl,$nlo));
&movq ($Zhi,&QWP(0,$Htbl,$nlo));
- &movd ($rem,$Zlo);
- &jmp (&label("mmx_loop"));
-
- &set_label("mmx_loop",16);
- &psrlq ($Zlo,4);
- &and ($rem,0xf);
- &movq ($tmp,$Zhi);
- &psrlq ($Zhi,4);
- &pxor ($Zlo,&QWP(8,$Htbl,$nhi));
- &mov (&LB($nlo),&BP(0,$inp,$cnt));
- &psllq ($tmp,60);
- &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
- &dec ($cnt);
- &movd ($rem,$Zlo);
- &pxor ($Zhi,&QWP(0,$Htbl,$nhi));
- &mov ($nhi,$nlo);
- &pxor ($Zlo,$tmp);
- &js (&label("mmx_break"));
+ &movd ($rem[0],$Zlo);
+
+ for ($cnt=28;$cnt>=-2;$cnt--) {
+ my $odd = $cnt&1;
+ my $nix = $odd ? $nlo : $nhi;
+
+ &shl (&LB($nlo),4) if ($odd);
+ &psrlq ($Zlo,4);
+ &movq ($tmp,$Zhi);
+ &psrlq ($Zhi,4);
+ &pxor ($Zlo,&QWP(8,$Htbl,$nix));
+ &mov (&LB($nlo),&BP($cnt/2,$inp)) if (!$odd && $cnt>=0);
+ &psllq ($tmp,60);
+ &and ($nhi,0xf0) if ($odd);
+ &pxor ($Zhi,&QWP(0,$rem_4bit,$rem[1],8)) if ($cnt<28);
+ &and ($rem[0],0xf);
+ &pxor ($Zhi,&QWP(0,$Htbl,$nix));
+ &mov ($nhi,$nlo) if (!$odd && $cnt>=0);
+ &movd ($rem[1],$Zlo);
+ &pxor ($Zlo,$tmp);
+
+ push (@rem,shift(@rem)); # "rotate" registers
+ }
- &shl (&LB($nlo),4);
- &and ($rem,0xf);
- &psrlq ($Zlo,4);
- &and ($nhi,0xf0);
- &movq ($tmp,$Zhi);
- &psrlq ($Zhi,4);
- &pxor ($Zlo,&QWP(8,$Htbl,$nlo));
- &psllq ($tmp,60);
- &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
- &movd ($rem,$Zlo);
- &pxor ($Zhi,&QWP(0,$Htbl,$nlo));
- &pxor ($Zlo,$tmp);
- &jmp (&label("mmx_loop"));
-
- &set_label("mmx_break",16);
- &shl (&LB($nlo),4);
- &and ($rem,0xf);
- &psrlq ($Zlo,4);
- &and ($nhi,0xf0);
- &movq ($tmp,$Zhi);
- &psrlq ($Zhi,4);
- &pxor ($Zlo,&QWP(8,$Htbl,$nlo));
- &psllq ($tmp,60);
- &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
- &movd ($rem,$Zlo);
- &pxor ($Zhi,&QWP(0,$Htbl,$nlo));
- &pxor ($Zlo,$tmp);
-
- &psrlq ($Zlo,4);
- &and ($rem,0xf);
- &movq ($tmp,$Zhi);
- &psrlq ($Zhi,4);
- &pxor ($Zlo,&QWP(8,$Htbl,$nhi));
- &psllq ($tmp,60);
- &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
- &movd ($rem,$Zlo);
- &pxor ($Zhi,&QWP(0,$Htbl,$nhi));
- &pxor ($Zlo,$tmp);
+ &mov ($inp,&DWP(4,$rem_4bit,$rem[1],8)); # last rem_4bit[rem]
&psrlq ($Zlo,32); # lower part of Zlo is already there
&movd ($Zhl,$Zhi);
&psrlq ($Zhi,32);
&movd ($Zlh,$Zlo);
&movd ($Zhh,$Zhi);
+ &shl ($inp,4); # compensate for rem_4bit[i] being >>4
&bswap ($Zll);
&bswap ($Zhl);
&bswap ($Zlh);
+ &xor ($Zhh,$inp);
&bswap ($Zhh);
+
+ &ret ();
}
+&function_end_B("_mmx_gmult_4bit_inner");
&function_begin("gcm_gmult_4bit_mmx");
&mov ($inp,&wparam(0)); # load Xi
@@ -421,8 +401,9 @@ sub mmx_loop() {
&movz ($Zll,&BP(15,$inp));
- &mmx_loop($inp,"eax");
+ &call ("_mmx_gmult_4bit_inner");
+ &mov ($inp,&wparam(0)); # load Xi
&emms ();
&mov (&DWP(12,$inp),$Zll);
&mov (&DWP(4,$inp),$Zhl);
@@ -458,15 +439,18 @@ sub mmx_loop() {
&xor ($Zhl,&DWP(4,$inp));
&xor ($Zlh,&DWP(8,$inp));
&xor ($Zhh,&DWP(0,$inp));
+ &mov (&wparam(2),$inp);
&mov (&DWP(12,"esp"),$Zll);
&mov (&DWP(4,"esp"),$Zhl);
&mov (&DWP(8,"esp"),$Zlh);
&mov (&DWP(0,"esp"),$Zhh);
+ &mov ($inp,"esp");
&shr ($Zll,24);
- &mmx_loop("esp","eax");
+ &call ("_mmx_gmult_4bit_inner");
+ &mov ($inp,&wparam(2));
&lea ($inp,&DWP(16,$inp));
&cmp ($inp,&wparam(3));
&jb (&label("mmx_outer_loop"));
@@ -552,8 +536,8 @@ if (1) { # Algorithm 9 with <<1 twist.
# candidate for interleaving with 64x64
# multiplication. Pre-modulo-scheduled loop
# was found to be ~20% faster than Algorithm 5
- # below. Algorithm 9 was then chosen and
- # optimized further...
+ # below. Algorithm 9 was therefore chosen for
+ # further optimization...
sub reduction_alg9 { # 17/13 times faster than Intel version
my ($Xhi,$Xi) = @_;
@@ -567,7 +551,7 @@ my ($Xhi,$Xi) = @_;
&psllq ($Xi,57); #
&movdqa ($T2,$Xi); #
&pslldq ($Xi,8);
- &psrldq ($T2,8); #
+ &psrldq ($T2,8); #
&pxor ($Xi,$T1);
&pxor ($Xhi,$T2); #
@@ -952,11 +936,34 @@ my ($Xhi,$Xi)=@_;
}} # $sse2
&set_label("rem_4bit",64);
- &data_word(0,0x0000<<16,0,0x1C20<<16,0,0x3840<<16,0,0x2460<<16);
- &data_word(0,0x7080<<16,0,0x6CA0<<16,0,0x48C0<<16,0,0x54E0<<16);
- &data_word(0,0xE100<<16,0,0xFD20<<16,0,0xD940<<16,0,0xC560<<16);
- &data_word(0,0x9180<<16,0,0x8DA0<<16,0,0xA9C0<<16,0,0xB5E0<<16);
+ &data_word(0,0x0000<<12,0,0x1C20<<12,0,0x3840<<12,0,0x2460<<12);
+ &data_word(0,0x7080<<12,0,0x6CA0<<12,0,0x48C0<<12,0,0x54E0<<12);
+ &data_word(0,0xE100<<12,0,0xFD20<<12,0,0xD940<<12,0,0xC560<<12);
+ &data_word(0,0x9180<<12,0,0x8DA0<<12,0,0xA9C0<<12,0,0xB5E0<<12);
}}} # !$x86only
&asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>");
&asm_finish();
+
+# A question was risen about choice of vanilla MMX. Or rather why wasn't
+# SSE2 chosen instead? In addition to the fact that MMX runs on legacy
+# CPUs such as PIII, "4-bit" MMX version was observed to provide better
+# performance than *corresponding* SSE2 one even on contemporary CPUs.
+# SSE2 results were provided by Peter-Michael Hager. He maintains SSE2
+# implementation featuring full range of lookup-table sizes, but with
+# per-invocation lookup table setup. Latter means that table size is
+# chosen depending on how much data is to be hashed in every given call,
+# more data - larger table. Best reported result for Core2 is ~4 cycles
+# per processed byte out of 64KB block. Recall that this number accounts
+# even for 64KB table setup overhead. As discussed in gcm128.c we choose
+# to be more conservative in respect to lookup table sizes, but how
+# do the results compare? As per table in the beginning, minimalistic
+# MMX version delivers ~11 cycles on same platform. As also discussed in
+# gcm128.c, next in line "8-bit Shoup's" method should deliver twice the
+# performance of "4-bit" one. It should be also be noted that in SSE2
+# case improvement can be "super-linear," i.e. more than twice, mostly
+# because >>8 maps to single instruction on SSE2 register. This is
+# unlike "4-bit" case when >>4 maps to same amount of instructions in
+# both MMX and SSE2 cases. Bottom line is that switch to SSE2 is
+# considered to be justifiable only in case we choose to implement
+# "8-bit" method...