aboutsummaryrefslogtreecommitdiffstats
path: root/apps/speed.c
diff options
context:
space:
mode:
authorAndrea Grandi <andrea.grandi@intel.com>2015-12-09 07:26:38 +0000
committerMatt Caswell <matt@openssl.org>2016-03-07 16:27:24 +0000
commit8b0b80d923d3dfcf982caf27b17bd14d3fa9ff01 (patch)
tree6d20edd2661d7fe5f0a2b2a5f913ed64b9091ac1 /apps/speed.c
parenta556f342201473b4bf8dbf879b03890a74e412b6 (diff)
downloadopenssl-8b0b80d923d3dfcf982caf27b17bd14d3fa9ff01.tar.gz
Add support for async jobs in OpenSSL speed
Summary of the changes: * Move the calls to the crypto operations inside wrapper functions. This is required because ASYNC_start_job takes a function as an argument. * Add new function run_benchmark() that manages the jobs for all the operations. In the POSIX case it uses a select() to receive the events from the engine and resume the jobs that are paused, while in the WIN case it uses PeekNamedPipe() * Add new option argument async_jobs to enable and specify the number of async jobs Example: openssl speed -engine dasync -elapsed -async_jobs 32 rsa2048 Reviewed-by: Richard Levitte <levitte@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org>
Diffstat (limited to 'apps/speed.c')
-rw-r--r--apps/speed.c1518
1 files changed, 1064 insertions, 454 deletions
diff --git a/apps/speed.c b/apps/speed.c
index 97d8e5617f..80c76382e9 100644
--- a/apps/speed.c
+++ b/apps/speed.c
@@ -86,6 +86,7 @@
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/objects.h>
+#include <openssl/async.h>
#if !defined(OPENSSL_SYS_MSDOS)
# include OPENSSL_UNISTD
#endif
@@ -98,6 +99,24 @@
# include <windows.h>
#endif
+#if defined(OPENSSL_SYS_UNIX) && defined(OPENSSL_THREADS)
+# include <unistd.h>
+#endif
+
+#if !defined(OPENSSL_NO_ASYNC)
+# if defined(OPENSSL_SYS_UNIX) && defined(OPENSSL_THREADS)
+# if _POSIX_VERSION >= 200112L
+# define ASYNC_POSIX
+# endif
+# elif defined(_WIN32) || defined(__CYGWIN__)
+# define ASYNC_WIN
+# endif
+#endif
+
+#if !defined(ASYNC_POSIX) && !defined(ASYNC_WIN)
+# define ASYNC_NULL
+#endif
+
#include <openssl/bn.h>
#ifndef OPENSSL_NO_DES
# include <openssl/des.h>
@@ -178,7 +197,7 @@
#endif
#undef BUFSIZE
-#define BUFSIZE (1024*8+1)
+#define BUFSIZE (1024*16+1)
#define MAX_MISALIGNMENT 63
static volatile int run = 0;
@@ -186,6 +205,75 @@ static volatile int run = 0;
static int mr = 0;
static int usertime = 1;
+typedef struct loopargs_st {
+ ASYNC_JOB *inprogress_job;
+ unsigned char *buf;
+ unsigned char *buf2;
+ unsigned char *buf_malloc;
+ unsigned char *buf2_malloc;
+ EVP_CIPHER_CTX *ctx;
+ HMAC_CTX *hctx;
+ GCM128_CONTEXT *gcm_ctx;
+ unsigned char ecdsasig[256];
+ unsigned int siglen;
+} loopargs_t;
+
+#ifndef OPENSSL_NO_MD2
+static int EVP_Digest_MD2_loop(void *args);
+#endif
+
+#ifndef OPENSSL_NO_MDC2
+static int EVP_Digest_MDC2_loop(void *args);
+#endif
+#ifndef OPENSSL_NO_MD4
+static int EVP_Digest_MD4_loop(void *args);
+#endif
+#ifndef OPENSSL_NO_MD5
+static int MD5_loop(void *args);
+static int HMAC_loop(void *args);
+#endif
+static int SHA1_loop(void *args);
+static int SHA256_loop(void *args);
+static int SHA512_loop(void *args);
+#ifndef OPENSSL_NO_WHIRLPOOL
+static int WHIRLPOOL_loop(void *args);
+#endif
+#ifndef OPENSSL_NO_RMD160
+static int EVP_Digest_RMD160_loop(void *args);
+#endif
+#ifndef OPENSSL_NO_RC4
+static int RC4_loop(void *args);
+#endif
+#ifndef OPENSSL_NO_DES
+static int DES_ncbc_encrypt_loop(void *args);
+static int DES_ede3_cbc_encrypt_loop(void *args);
+#endif
+#ifndef OPENSSL_NO_AES
+static int AES_cbc_128_encrypt_loop(void *args);
+static int AES_cbc_192_encrypt_loop(void *args);
+static int AES_ige_128_encrypt_loop(void *args);
+static int AES_cbc_256_encrypt_loop(void *args);
+static int AES_ige_192_encrypt_loop(void *args);
+static int AES_ige_256_encrypt_loop(void *args);
+static int CRYPTO_gcm128_aad_loop(void *args);
+#endif
+static int EVP_Update_loop(void *args);
+static int EVP_Digest_loop(void *args);
+#ifndef OPENSSL_NO_RSA
+static int RSA_sign_loop(void *args);
+static int RSA_verify_loop(void *args);
+#endif
+#ifndef OPENSSL_NO_DSA
+static int DSA_sign_loop(void *args);
+static int DSA_verify_loop(void *args);
+#endif
+#ifndef OPENSSL_NO_EC
+static int ECDSA_sign_loop(void *args);
+static int ECDSA_verify_loop(void *args);
+static int ECDH_compute_key_loop(void *args);
+#endif
+static int run_benchmark(int async_jobs, int (*loop_function)(void *), loopargs_t *loopargs);
+
static double Time_F(int s);
static void print_message(const char *s, long num, int length);
static void pkey_print_message(const char *str, const char *str2,
@@ -196,7 +284,7 @@ static int do_multi(int multi);
#endif
#define ALGOR_NUM 30
-#define SIZE_NUM 5
+#define SIZE_NUM 6
#define PRIME_NUM 3
#define RSA_NUM 7
#define DSA_NUM 3
@@ -217,7 +305,7 @@ static const char *names[ALGOR_NUM] = {
static double results[ALGOR_NUM][SIZE_NUM];
static int lengths[SIZE_NUM] = {
- 16, 64, 256, 1024, 8 * 1024
+ 16, 64, 256, 1024, 8 * 1024, 16 * 1024
};
#ifndef OPENSSL_NO_RSA
@@ -339,7 +427,7 @@ static int found(const char *name, const OPT_PAIR * pairs, int *result)
typedef enum OPTION_choice {
OPT_ERR = -1, OPT_EOF = 0, OPT_HELP,
OPT_ELAPSED, OPT_EVP, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI,
- OPT_MR, OPT_MB, OPT_MISALIGN
+ OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS
} OPTION_CHOICE;
OPTIONS speed_options[] = {
@@ -357,6 +445,9 @@ OPTIONS speed_options[] = {
#ifndef NO_FORK
{"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"},
#endif
+#ifndef ASYNC_NULL
+ {"async_jobs", OPT_ASYNCJOBS, 'p', "Enable async mode and start pnum jobs"},
+#endif
#ifndef OPENSSL_NO_ENGINE
{"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"},
#endif
@@ -552,51 +643,607 @@ static OPT_PAIR ecdh_choices[] = {
};
#endif
-int speed_main(int argc, char **argv)
-{
- char *prog;
- const EVP_CIPHER *evp_cipher = NULL;
- const EVP_MD *evp_md = NULL;
- double d = 0.0;
- OPTION_CHOICE o;
- int decrypt = 0, multiblock = 0, doit[ALGOR_NUM], pr_header = 0;
- int dsa_doit[DSA_NUM], rsa_doit[RSA_NUM];
- int ret = 1, i, j, k, misalign = MAX_MISALIGNMENT + 1;
- long c[ALGOR_NUM][SIZE_NUM], count = 0, save_count = 0;
- unsigned char *buf_malloc = NULL, *buf2_malloc = NULL;
- unsigned char *buf = NULL, *buf2 = NULL;
- unsigned char md[EVP_MAX_MD_SIZE];
-#ifndef NO_FORK
- int multi = 0;
-#endif
- /* What follows are the buffers and key material. */
-#if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA)
- long rsa_count;
-#endif
+#ifndef SIGALRM
+# define COND(d) (count < (d))
+# define COUNT(d) (d)
+#else
+# define COND(c) (run && count<0x7fffffff)
+# define COUNT(d) (count)
+#endif /* SIGALRM */
+
+static int testnum;
+static char *engine_id = NULL;
+
+
#ifndef OPENSSL_NO_MD2
+static int EVP_Digest_MD2_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
unsigned char md2[MD2_DIGEST_LENGTH];
+ int count;
+ for (count = 0; COND(c[D_MD2][testnum]); count++)
+ EVP_Digest(buf, (unsigned long)lengths[testnum], &(md2[0]), NULL,
+ EVP_md2(), NULL);
+ return count;
+}
#endif
+
#ifndef OPENSSL_NO_MDC2
+static int EVP_Digest_MDC2_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
unsigned char mdc2[MDC2_DIGEST_LENGTH];
+ int count;
+ for (count = 0; COND(c[D_MDC2][testnum]); count++)
+ EVP_Digest(buf, (unsigned long)lengths[testnum], &(mdc2[0]), NULL,
+ EVP_mdc2(), NULL);
+ return count;
+}
#endif
+
#ifndef OPENSSL_NO_MD4
+static int EVP_Digest_MD4_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
unsigned char md4[MD4_DIGEST_LENGTH];
+ int count;
+ for (count = 0; COND(c[D_MD4][testnum]); count++)
+ EVP_Digest(&(buf[0]), (unsigned long)lengths[testnum], &(md4[0]),
+ NULL, EVP_md4(), NULL);
+ return count;
+}
#endif
+
#ifndef OPENSSL_NO_MD5
+static int MD5_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
unsigned char md5[MD5_DIGEST_LENGTH];
+ int count;
+ for (count = 0; COND(c[D_MD5][testnum]); count++)
+ MD5(buf, lengths[testnum], md5);
+ return count;
+}
+
+static int HMAC_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
+ HMAC_CTX *hctx = tempargs->hctx;
unsigned char hmac[MD5_DIGEST_LENGTH];
+ int count;
+ for (count = 0; COND(c[D_HMAC][testnum]); count++) {
+ HMAC_Init_ex(hctx, NULL, 0, NULL, NULL);
+ HMAC_Update(hctx, buf, lengths[testnum]);
+ HMAC_Final(hctx, &(hmac[0]), NULL);
+ }
+ return count;
+}
#endif
+
+static int SHA1_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
unsigned char sha[SHA_DIGEST_LENGTH];
+ int count;
+ for (count = 0; COND(c[D_SHA1][testnum]); count++)
+ SHA1(buf, lengths[testnum], sha);
+ return count;
+}
+
+static int SHA256_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
unsigned char sha256[SHA256_DIGEST_LENGTH];
+ int count;
+ for (count = 0; COND(c[D_SHA256][testnum]); count++)
+ SHA256(buf, lengths[testnum], sha256);
+ return count;
+}
+
+static int SHA512_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
unsigned char sha512[SHA512_DIGEST_LENGTH];
+ int count;
+ for (count = 0; COND(c[D_SHA512][testnum]); count++)
+ SHA512(buf, lengths[testnum], sha512);
+ return count;
+}
+
#ifndef OPENSSL_NO_WHIRLPOOL
+static int WHIRLPOOL_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH];
+ int count;
+ for (count = 0; COND(c[D_WHIRLPOOL][testnum]); count++)
+ WHIRLPOOL(buf, lengths[testnum], whirlpool);
+ return count;
+}
#endif
+
#ifndef OPENSSL_NO_RMD160
+static int EVP_Digest_RMD160_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
unsigned char rmd160[RIPEMD160_DIGEST_LENGTH];
+ int count;
+ for (count = 0; COND(c[D_RMD160][testnum]); count++)
+ EVP_Digest(buf, (unsigned long)lengths[testnum], &(rmd160[0]), NULL,
+ EVP_ripemd160(), NULL);
+ return count;
+}
#endif
+
#ifndef OPENSSL_NO_RC4
- RC4_KEY rc4_ks;
+static RC4_KEY rc4_ks;
+static int RC4_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
+ int count;
+ for (count = 0; COND(c[D_RC4][testnum]); count++)
+ RC4(&rc4_ks, (unsigned int)lengths[testnum], buf, buf);
+ return count;
+}
+#endif
+
+#ifndef OPENSSL_NO_DES
+static unsigned char DES_iv[8];
+static DES_key_schedule sch;
+static DES_key_schedule sch2;
+static DES_key_schedule sch3;
+static int DES_ncbc_encrypt_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
+ int count;
+ for (count = 0; COND(c[D_CBC_DES][testnum]); count++)
+ DES_ncbc_encrypt(buf, buf, lengths[testnum], &sch,
+ &DES_iv, DES_ENCRYPT);
+ return count;
+}
+
+static int DES_ede3_cbc_encrypt_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
+ int count;
+ for (count = 0; COND(c[D_EDE3_DES][testnum]); count++)
+ DES_ede3_cbc_encrypt(buf, buf, lengths[testnum],
+ &sch, &sch2, &sch3,
+ &DES_iv, DES_ENCRYPT);
+ return count;
+}
+#endif
+
+#ifndef OPENSSL_NO_AES
+# define MAX_BLOCK_SIZE 128
+#else
+# define MAX_BLOCK_SIZE 64
+#endif
+
+static unsigned char iv[2 * MAX_BLOCK_SIZE / 8];
+#ifndef OPENSSL_NO_AES
+static AES_KEY aes_ks1, aes_ks2, aes_ks3;
+static int AES_cbc_128_encrypt_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
+ int count;
+ for (count = 0; COND(c[D_CBC_128_AES][testnum]); count++)
+ AES_cbc_encrypt(buf, buf,
+ (unsigned long)lengths[testnum], &aes_ks1,
+ iv, AES_ENCRYPT);
+ return count;
+}
+
+static int AES_cbc_192_encrypt_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
+ int count;
+ for (count = 0; COND(c[D_CBC_192_AES][testnum]); count++)
+ AES_cbc_encrypt(buf, buf,
+ (unsigned long)lengths[testnum], &aes_ks2,
+ iv, AES_ENCRYPT);
+ return count;
+}
+
+static int AES_cbc_256_encrypt_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
+ int count;
+ for (count = 0; COND(c[D_CBC_256_AES][testnum]); count++)
+ AES_cbc_encrypt(buf, buf,
+ (unsigned long)lengths[testnum], &aes_ks3,
+ iv, AES_ENCRYPT);
+ return count;
+}
+
+static int AES_ige_128_encrypt_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char *buf2 = tempargs->buf2;
+ int count;
+ for (count = 0; COND(c[D_IGE_128_AES][testnum]); count++)
+ AES_ige_encrypt(buf, buf2,
+ (unsigned long)lengths[testnum], &aes_ks1,
+ iv, AES_ENCRYPT);
+ return count;
+}
+
+static int AES_ige_192_encrypt_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char *buf2 = tempargs->buf2;
+ int count;
+ for (count = 0; COND(c[D_IGE_192_AES][testnum]); count++)
+ AES_ige_encrypt(buf, buf2,
+ (unsigned long)lengths[testnum], &aes_ks2,
+ iv, AES_ENCRYPT);
+ return count;
+}
+
+static int AES_ige_256_encrypt_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char *buf2 = tempargs->buf2;
+ int count;
+ for (count = 0; COND(c[D_IGE_256_AES][testnum]); count++)
+ AES_ige_encrypt(buf, buf2,
+ (unsigned long)lengths[testnum], &aes_ks3,
+ iv, AES_ENCRYPT);
+ return count;
+}
+
+static int CRYPTO_gcm128_aad_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
+ GCM128_CONTEXT *gcm_ctx = tempargs->gcm_ctx;
+ int count;
+ for (count = 0; COND(c[D_GHASH][testnum]); count++)
+ CRYPTO_gcm128_aad(gcm_ctx, buf, lengths[testnum]);
+ return count;
+}
+
+#endif
+
+static int decrypt = 0;
+static int EVP_Update_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
+ EVP_CIPHER_CTX *ctx = tempargs->ctx;
+ int outl, count;
+ if (decrypt)
+ for (count = 0;
+ COND(save_count * 4 * lengths[0] / lengths[testnum]);
+ count++)
+ EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
+ else
+ for (count = 0;
+ COND(save_count * 4 * lengths[0] / lengths[testnum]);
+ count++)
+ EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
+ if (decrypt)
+ EVP_DecryptFinal_ex(ctx, buf, &outl);
+ else
+ EVP_EncryptFinal_ex(ctx, buf, &outl);
+ return count;
+}
+
+static const EVP_MD *evp_md = NULL;
+static int EVP_Digest_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char md[EVP_MAX_MD_SIZE];
+ int count;
+ for (count = 0;
+ COND(save_count * 4 * lengths[0] / lengths[testnum]); count++)
+ EVP_Digest(buf, lengths[testnum], &(md[0]), NULL, evp_md, NULL);
+
+ return count;
+}
+
+#ifndef OPENSSL_NO_RSA
+static unsigned rsa_num;
+static RSA *rsa_key[RSA_NUM];
+static long rsa_c[RSA_NUM][2];
+
+static int RSA_sign_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char *buf2 = tempargs->buf2;
+ int ret, count;
+ for (count = 0; COND(rsa_c[testnum][0]); count++) {
+ ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, &rsa_num, rsa_key[testnum]);
+ if (ret == 0) {
+ BIO_printf(bio_err, "RSA sign failure\n");
+ ERR_print_errors(bio_err);
+ count = -1;
+ break;
+ }
+ }
+ return count;
+}
+
+static int RSA_verify_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char *buf2 = tempargs->buf2;
+ int ret, count;
+ for (count = 0; COND(rsa_c[testnum][1]); count++) {
+ ret = RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
+ if (ret <= 0) {
+ BIO_printf(bio_err, "RSA verify failure\n");
+ ERR_print_errors(bio_err);
+ count = -1;
+ break;
+ }
+ }
+ return count;
+}
+#endif
+
+#ifndef OPENSSL_NO_DSA
+static DSA *dsa_key[DSA_NUM];
+static long dsa_c[DSA_NUM][2];
+static int DSA_sign_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char *buf2 = tempargs->buf2;
+ unsigned int *siglen = &(tempargs->siglen);
+ int ret, count;
+ for (count = 0; COND(dsa_c[testnum][0]); count++) {
+ ret = DSA_sign(0, buf, 20, buf2, siglen, dsa_key[testnum]);
+ if (ret == 0) {
+ BIO_printf(bio_err, "DSA sign failure\n");
+ ERR_print_errors(bio_err);
+ count = 1;
+ break;
+ }
+ }
+ return count;
+}
+
+static int DSA_verify_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char *buf2 = tempargs->buf2;
+ unsigned int siglen = tempargs->siglen;
+ int ret, count;
+ for (count = 0; COND(dsa_c[testnum][1]); count++) {
+ ret = DSA_verify(0, buf, 20, buf2, siglen, dsa_key[testnum]);
+ if (ret <= 0) {
+ BIO_printf(bio_err, "DSA verify failure\n");
+ ERR_print_errors(bio_err);
+ count = 1;
+ break;
+ }
+ }
+ return count;
+}
+#endif
+
+#ifndef OPENSSL_NO_EC
+static EC_KEY *ecdsa[EC_NUM];
+static long ecdsa_c[EC_NUM][2];
+static int ECDSA_sign_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char *ecdsasig = tempargs->ecdsasig;
+ unsigned int *ecdsasiglen = &(tempargs->siglen);
+ int ret, count;
+ for (count = 0; COND(ecdsa_c[testnum][0]); count++) {
+ ret = ECDSA_sign(0, buf, 20,
+ ecdsasig, ecdsasiglen, ecdsa[testnum]);
+ if (ret == 0) {
+ BIO_printf(bio_err, "ECDSA sign failure\n");
+ ERR_print_errors(bio_err);
+ count = 1;
+ break;
+ }
+ }
+ return count;
+}
+
+static int ECDSA_verify_loop(void *args)
+{
+ loopargs_t *tempargs = (loopargs_t *)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char *ecdsasig = tempargs->ecdsasig;
+ unsigned int ecdsasiglen = tempargs->siglen;
+ int ret, count;
+ for (count = 0; COND(ecdsa_c[testnum][1]); count++) {
+ ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen,
+ ecdsa[testnum]);
+ if (ret != 1) {
+ BIO_printf(bio_err, "ECDSA verify failure\n");
+ ERR_print_errors(bio_err);
+ count = 1;
+ break;
+ }
+ }
+ return count;
+}
+
+static unsigned char secret_a[MAX_ECDH_SIZE], secret_b[MAX_ECDH_SIZE];
+static EC_KEY *ecdh_a[EC_NUM], *ecdh_b[EC_NUM];
+static int outlen;
+static void *(*kdf) (const void *in, size_t inlen, void *out,
+ size_t *xoutlen);
+
+static int ECDH_compute_key_loop(void *args)
+{
+ int count;
+ for (count = 0; COND(ecdh_c[testnum][0]); count++) {
+ ECDH_compute_key(secret_a, outlen,
+ EC_KEY_get0_public_key(ecdh_b[testnum]),
+ ecdh_a[testnum], kdf);
+ }
+ return count;
+}
+#endif
+
+
+static int run_benchmark(int async_jobs, int (*loop_function)(void *), loopargs_t *loopargs)
+{
+ int job_op_count = 0;
+ int total_op_count = 0;
+ int num_inprogress = 0;
+ int error = 0;
+ int i = 0;
+
+ run = 1;
+
+ if (0 == async_jobs) {
+ return loop_function((void *)loopargs);
+ }
+
+ for (i = 0; i < async_jobs && !error; i++) {
+ switch (ASYNC_start_job(&(loopargs[i].inprogress_job), &job_op_count,
+ loop_function, (void *)(loopargs + i), sizeof(loopargs_t))) {
+ case ASYNC_PAUSE:
+ ++num_inprogress;
+ break;
+ case ASYNC_FINISH:
+ if (job_op_count == -1) {
+ error = 1;
+ } else {
+ total_op_count += job_op_count;
+ }
+ break;
+ case ASYNC_NO_JOBS:
+ case ASYNC_ERR:
+ BIO_printf(bio_err, "Failure in the job\n");
+ ERR_print_errors(bio_err);
+ error = 1;
+ break;
+ }
+ }
+
+ while (num_inprogress > 0) {
+ OSSL_ASYNC_FD job_fd = 0;
+#if defined(ASYNC_POSIX)
+ OSSL_ASYNC_FD max_fd = 0;
+ int select_result = 0;
+ fd_set waitfdset;
+ struct timeval select_timeout;
+ FD_ZERO(&waitfdset);
+ select_timeout.tv_sec=0;
+ select_timeout.tv_usec=0;
+
+ for (i = 0; i < async_jobs; i++) {
+ if (loopargs[i].inprogress_job != NULL) {
+ job_fd = ASYNC_get_wait_fd(loopargs[i].inprogress_job);
+ FD_SET(job_fd, &waitfdset);
+ if (job_fd > max_fd)
+ max_fd = job_fd;
+ }
+ }
+ select_result = select(max_fd + 1, &waitfdset, NULL, NULL, &select_timeout);
+
+ if (select_result == -1 && errno == EINTR)
+ continue;
+
+ if (select_result == -1) {
+ BIO_printf(bio_err, "Failure in the select\n");
+ ERR_print_errors(bio_err);
+ error = 1;
+ break;
+ }
+
+ if (select_result == 0)
+ continue;
+
+#elif defined(ASYNC_WIN)
+ DWORD avail = 0;
+#endif
+
+ for (i = 0; i < async_jobs; i++) {
+ if (loopargs[i].inprogress_job == NULL)
+ continue;
+
+ job_fd = ASYNC_get_wait_fd(loopargs[i].inprogress_job);
+
+#if defined(ASYNC_POSIX)
+ if (!FD_ISSET(job_fd, &waitfdset))
+ continue;
+#elif defined(ASYNC_WIN)
+ if (!PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL) && avail > 0)
+ continue;
+#endif
+
+ switch (ASYNC_start_job(&(loopargs[i].inprogress_job),
+ &job_op_count, loop_function, (void *)(loopargs + i),
+ sizeof(loopargs_t))) {
+ case ASYNC_PAUSE:
+ break;
+ case ASYNC_FINISH:
+ if (job_op_count == -1) {
+ error = 1;
+ } else {
+ total_op_count += job_op_count;
+ }
+ --num_inprogress;
+ loopargs[i].inprogress_job = NULL;
+ break;
+ case ASYNC_NO_JOBS:
+ case ASYNC_ERR:
+ --num_inprogress;
+ loopargs[i].inprogress_job = NULL;
+ BIO_printf(bio_err, "Failure in the job\n");
+ ERR_print_errors(bio_err);
+ error = 1;
+ break;
+ }
+ }
+ }
+
+ return error ? -1 : total_op_count;
+}
+
+int speed_main(int argc, char **argv)
+{
+ loopargs_t *loopargs = NULL;
+ int loopargs_len = 0;
+ char *prog;
+ const EVP_CIPHER *evp_cipher = NULL;
+ double d = 0.0;
+ OPTION_CHOICE o;
+ int multiblock = 0, doit[ALGOR_NUM], pr_header = 0;
+ int dsa_doit[DSA_NUM], rsa_doit[RSA_NUM];
+ int ret = 1, i, k, misalign = 0;
+ long c[ALGOR_NUM][SIZE_NUM], count = 0, save_count = 0;
+#ifndef NO_FORK
+ int multi = 0;
+#endif
+ int async_jobs = 0;
+ /* What follows are the buffers and key material. */
+#if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA)
+ long rsa_count;
#endif
#ifndef OPENSSL_NO_RC5
RC5_32_KEY rc5_ks;
@@ -647,13 +1294,6 @@ int speed_main(int argc, char **argv)
};
CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3;
#endif
-#ifndef OPENSSL_NO_AES
-# define MAX_BLOCK_SIZE 128
-#else
-# define MAX_BLOCK_SIZE 64
-#endif
- unsigned char DES_iv[8];
- unsigned char iv[2 * MAX_BLOCK_SIZE / 8];
#ifndef OPENSSL_NO_DES
static DES_cblock key = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0
@@ -664,17 +1304,8 @@ int speed_main(int argc, char **argv)
static DES_cblock key3 = {
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
};
- DES_key_schedule sch;
- DES_key_schedule sch2;
- DES_key_schedule sch3;
-#endif
-#ifndef OPENSSL_NO_AES
- AES_KEY aes_ks1, aes_ks2, aes_ks3;
#endif
#ifndef OPENSSL_NO_RSA
- unsigned rsa_num;
- RSA *rsa_key[RSA_NUM];
- long rsa_c[RSA_NUM][2];
static unsigned int rsa_bits[RSA_NUM] = {
512, 1024, 2048, 3072, 4096, 7680, 15360
};
@@ -689,8 +1320,6 @@ int speed_main(int argc, char **argv)
};
#endif
#ifndef OPENSSL_NO_DSA
- DSA *dsa_key[DSA_NUM];
- long dsa_c[DSA_NUM][2];
static unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 };
#endif
#ifndef OPENSSL_NO_EC
@@ -733,13 +1362,7 @@ int speed_main(int argc, char **argv)
};
#endif
#ifndef OPENSSL_NO_EC
- unsigned char ecdsasig[256];
- unsigned int ecdsasiglen;
- EC_KEY *ecdsa[EC_NUM];
- long ecdsa_c[EC_NUM][2];
int ecdsa_doit[EC_NUM];
- EC_KEY *ecdh_a[EC_NUM], *ecdh_b[EC_NUM];
- unsigned char secret_a[MAX_ECDH_SIZE], secret_b[MAX_ECDH_SIZE];
int secret_size_a, secret_size_b;
int ecdh_checks = 0;
int secret_idx = 0;
@@ -780,8 +1403,6 @@ int speed_main(int argc, char **argv)
ecdh_doit[i] = 0;
#endif
- buf = buf_malloc = app_malloc((int)BUFSIZE + misalign, "input buffer");
- buf2 = buf2_malloc = app_malloc((int)BUFSIZE + misalign, "output buffer");
misalign = 0;
prog = opt_init(argc, argv, speed_options);
@@ -815,13 +1436,23 @@ int speed_main(int argc, char **argv)
decrypt = 1;
break;
case OPT_ENGINE:
- (void)setup_engine(opt_arg(), 0);
+ /*
+ * In a forked execution, an engine might need to be
+ * initialised by each child process, not by the parent.
+ * So store the name here and run setup_engine() later on.
+ */
+ engine_id = opt_arg();
break;
case OPT_MULTI:
#ifndef NO_FORK
multi = atoi(opt_arg());
#endif
break;
+ case OPT_ASYNCJOBS:
+#ifndef ASYNC_NULL
+ async_jobs = atoi(opt_arg());
+#endif
+ break;
case OPT_MISALIGN:
if (!opt_int(opt_arg(), &misalign))
goto end;
@@ -830,8 +1461,6 @@ int speed_main(int argc, char **argv)
"%s: Maximum offset is %d\n", prog, MISALIGN);
goto opterr;
}
- buf = buf_malloc + misalign;
- buf2 = buf2_malloc + misalign;
break;
case OPT_MR:
mr = 1;
@@ -928,11 +1557,34 @@ int speed_main(int argc, char **argv)
goto end;
}
+ /* Initialize the job pool if async mode is enabled */
+ if (async_jobs > 0) {
+ if (!ASYNC_init_thread(async_jobs, async_jobs)) {
+ BIO_printf(bio_err, "Error creating the ASYNC job pool\n");
+ goto end;
+ }
+ }
+
+ loopargs_len = (async_jobs == 0 ? 1 : async_jobs);
+ loopargs = app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs");
+ memset(loopargs, 0, loopargs_len * sizeof(loopargs_t));
+
+ for (i = 0; i < loopargs_len; ++i) {
+ loopargs[i].buf_malloc = app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer");
+ loopargs[i].buf2_malloc = app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer");
+ /* Align the start of buffers on a 64 byte boundary */
+ loopargs[i].buf = loopargs[i].buf_malloc + misalign;
+ loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign;
+ }
+
#ifndef NO_FORK
if (multi && do_multi(multi))
goto show_res;
#endif
+ /* Initialize the engine after the fork */
+ (void)setup_engine(engine_id, 0);
+
/* No parameters; turn on everything. */
if ((argc == 0) && !doit[D_EVP]) {
for (i = 0; i < ALGOR_NUM; i++)
@@ -1026,8 +1678,8 @@ int speed_main(int argc, char **argv)
count *= 2;
Time_F(START);
for (it = count; it; it--)
- DES_ecb_encrypt((DES_cblock *)buf,
- (DES_cblock *)buf, &sch, DES_ENCRYPT);
+ DES_ecb_encrypt((DES_cblock *)loopargs[0].buf,
+ (DES_cblock *)loopargs[0].buf, &sch, DES_ENCRYPT);
d = Time_F(STOP);
} while (d < 3);
save_count = count;
@@ -1223,15 +1875,11 @@ int speed_main(int argc, char **argv)
}
# endif
-# define COND(d) (count < (d))
-# define COUNT(d) (d)
# else
/* not worth fixing */
# error "You cannot disable DES on systems without SIGALRM."
# endif /* OPENSSL_NO_DES */
#else
-# define COND(c) (run && count<0x7fffffff)
-# define COUNT(d) (count)
# ifndef _WIN32
signal(SIGALRM, sig_done);
# endif
@@ -1239,396 +1887,394 @@ int speed_main(int argc, char **argv)
#ifndef OPENSSL_NO_MD2
if (doit[D_MD2]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_MD2], c[D_MD2][j], lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_MD2], c[D_MD2][testnum], lengths[testnum]);
Time_F(START);
- for (count = 0, run = 1; COND(c[D_MD2][j]); count++)
- EVP_Digest(buf, (unsigned long)lengths[j], &(md2[0]), NULL,
- EVP_md2(), NULL);
+ count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs);
d = Time_F(STOP);
- print_result(D_MD2, j, count, d);
+ print_result(D_MD2, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_MDC2
if (doit[D_MDC2]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_MDC2], c[D_MDC2][j], lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_MDC2], c[D_MDC2][testnum], lengths[testnum]);
Time_F(START);
- for (count = 0, run = 1; COND(c[D_MDC2][j]); count++)
- EVP_Digest(buf, (unsigned long)lengths[j], &(mdc2[0]), NULL,
- EVP_mdc2(), NULL);
+ count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs);
d = Time_F(STOP);
- print_result(D_MDC2, j, count, d);
+ print_result(D_MDC2, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_MD4
if (doit[D_MD4]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_MD4], c[D_MD4][j], lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_MD4], c[D_MD4][testnum], lengths[testnum]);
Time_F(START);
- for (count = 0, run = 1; COND(c[D_MD4][j]); count++)
- EVP_Digest(&(buf[0]), (unsigned long)lengths[j], &(md4[0]),
- NULL, EVP_md4(), NULL);
+ count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs);
d = Time_F(STOP);
- print_result(D_MD4, j, count, d);
+ print_result(D_MD4, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_MD5
if (doit[D_MD5]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_MD5], c[D_MD5][j], lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_MD5], c[D_MD5][testnum], lengths[testnum]);
Time_F(START);
- for (count = 0, run = 1; COND(c[D_MD5][j]); count++)
- MD5(buf, lengths[j], md5);
+ count = run_benchmark(async_jobs, MD5_loop, loopargs);
d = Time_F(STOP);
- print_result(D_MD5, j, count, d);
+ print_result(D_MD5, testnum, count, d);
}
}
#endif
-#if !defined(OPENSSL_NO_MD5)
+#ifndef OPENSSL_NO_MD5
if (doit[D_HMAC]) {
- HMAC_CTX *hctx = NULL;
+ for (i = 0; i < loopargs_len; ++i) {
+ loopargs[i].hctx = HMAC_CTX_new();
+ if (loopargs[i].hctx == NULL) {
+ BIO_printf(bio_err, "HMAC malloc failure, exiting...");
+ exit(1);
+ }
- hctx = HMAC_CTX_new();
- if (hctx == NULL) {
- BIO_printf(bio_err, "HMAC malloc failure, exiting...");
- exit(1);
+ HMAC_Init_ex(loopargs[i].hctx, (unsigned char *)"This is a key...",
+ 16, EVP_md5(), NULL);
}
- HMAC_Init_ex(hctx, (unsigned char *)"This is a key...",
- 16, EVP_md5(), NULL);
-
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_HMAC], c[D_HMAC][j], lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_HMAC], c[D_HMAC][testnum], lengths[testnum]);
Time_F(START);
- for (count = 0, run = 1; COND(c[D_HMAC][j]); count++) {
- HMAC_Init_ex(hctx, NULL, 0, NULL, NULL);
- HMAC_Update(hctx, buf, lengths[j]);
- HMAC_Final(hctx, &(hmac[0]), NULL);
- }
+ count = run_benchmark(async_jobs, HMAC_loop, loopargs);
d = Time_F(STOP);
- print_result(D_HMAC, j, count, d);
+ print_result(D_HMAC, testnum, count, d);
+ }
+ for (i = 0; i < loopargs_len; ++i) {
+ HMAC_CTX_free(loopargs[i].hctx);
}
- HMAC_CTX_free(hctx);
}
#endif
if (doit[D_SHA1]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_SHA1], c[D_SHA1][j], lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_SHA1], c[D_SHA1][testnum], lengths[testnum]);
Time_F(START);
- for (count = 0, run = 1; COND(c[D_SHA1][j]); count++)
- SHA1(buf, lengths[j], sha);
+ count = run_benchmark(async_jobs, SHA1_loop, loopargs);
d = Time_F(STOP);
- print_result(D_SHA1, j, count, d);
+ print_result(D_SHA1, testnum, count, d);
}
}
if (doit[D_SHA256]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_SHA256], c[D_SHA256][j], lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_SHA256], c[D_SHA256][testnum], lengths[testnum]);
Time_F(START);
- for (count = 0, run = 1; COND(c[D_SHA256][j]); count++)
- SHA256(buf, lengths[j], sha256);
+ count = run_benchmark(async_jobs, SHA256_loop, loopargs);
d = Time_F(STOP);
- print_result(D_SHA256, j, count, d);
+ print_result(D_SHA256, testnum, count, d);
}
}
if (doit[D_SHA512]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_SHA512], c[D_SHA512][j], lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_SHA512], c[D_SHA512][testnum], lengths[testnum]);
Time_F(START);
- for (count = 0, run = 1; COND(c[D_SHA512][j]); count++)
- SHA512(buf, lengths[j], sha512);
+ count = run_benchmark(async_jobs, SHA512_loop, loopargs);
d = Time_F(STOP);
- print_result(D_SHA512, j, count, d);
+ print_result(D_SHA512, testnum, count, d);
}
}
#ifndef OPENSSL_NO_WHIRLPOOL
if (doit[D_WHIRLPOOL]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][j], lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum], lengths[testnum]);
Time_F(START);
- for (count = 0, run = 1; COND(c[D_WHIRLPOOL][j]); count++)
- WHIRLPOOL(buf, lengths[j], whirlpool);
+ count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs);
d = Time_F(STOP);
- print_result(D_WHIRLPOOL, j, count, d);
+ print_result(D_WHIRLPOOL, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_RMD160
if (doit[D_RMD160]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_RMD160], c[D_RMD160][j], lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_RMD160], c[D_RMD160][testnum], lengths[testnum]);
Time_F(START);
- for (count = 0, run = 1; COND(c[D_RMD160][j]); count++)
- EVP_Digest(buf, (unsigned long)lengths[j], &(rmd160[0]), NULL,
- EVP_ripemd160(), NULL);
+ count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs);
d = Time_F(STOP);
- print_result(D_RMD160, j, count, d);
+ print_result(D_RMD160, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_RC4
if (doit[D_RC4]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_RC4], c[D_RC4][j], lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_RC4], c[D_RC4][testnum], lengths[testnum]);
Time_F(START);
- for (count = 0, run = 1; COND(c[D_RC4][j]); count++)
- RC4(&rc4_ks, (unsigned int)lengths[j], buf, buf);
+ count = run_benchmark(async_jobs, RC4_loop, loopargs);
d = Time_F(STOP);
- print_result(D_RC4, j, count, d);
+ print_result(D_RC4, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_DES
if (doit[D_CBC_DES]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_CBC_DES], c[D_CBC_DES][j], lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_CBC_DES], c[D_CBC_DES][testnum], lengths[testnum]);
Time_F(START);
- for (count = 0, run = 1; COND(c[D_CBC_DES][j]); count++)
- DES_ncbc_encrypt(buf, buf, lengths[j], &sch,
- &DES_iv, DES_ENCRYPT);
+ count = run_benchmark(async_jobs, DES_ncbc_encrypt_loop, loopargs);
d = Time_F(STOP);
- print_result(D_CBC_DES, j, count, d);
+ print_result(D_CBC_DES, testnum, count, d);
}
}
if (doit[D_EDE3_DES]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_EDE3_DES], c[D_EDE3_DES][j], lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum], lengths[testnum]);
Time_F(START);
- for (count = 0, run = 1; COND(c[D_EDE3_DES][j]); count++)
- DES_ede3_cbc_encrypt(buf, buf, lengths[j],
- &sch, &sch2, &sch3,
- &DES_iv, DES_ENCRYPT);
+ count = run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs);
d = Time_F(STOP);
- print_result(D_EDE3_DES, j, count, d);
+ print_result(D_EDE3_DES, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_AES
if (doit[D_CBC_128_AES]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][j],
- lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][testnum],
+ lengths[testnum]);
Time_F(START);
- for (count = 0, run = 1; COND(c[D_CBC_128_AES][j]); count++)
- AES_cbc_encrypt(buf, buf,
- (unsigned long)lengths[j], &aes_ks1,
- iv, AES_ENCRYPT);
+ count = run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs);
d = Time_F(STOP);
- print_result(D_CBC_128_AES, j, count, d);
+ print_result(D_CBC_128_AES, testnum, count, d);
}
}
if (doit[D_CBC_192_AES]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][j],
- lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][testnum],
+ lengths[testnum]);
Time_F(START);
- for (count = 0, run = 1; COND(c[D_CBC_192_AES][j]); count++)
- AES_cbc_encrypt(buf, buf,
- (unsigned long)lengths[j], &aes_ks2,
- iv, AES_ENCRYPT);
+ count = run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs);
d = Time_F(STOP);
- print_result(D_CBC_192_AES, j, count, d);
+ print_result(D_CBC_192_AES, testnum, count, d);
}
}
if (doit[D_CBC_256_AES]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][j],
- lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][testnum],
+ lengths[testnum]);
Time_F(START);
- for (count = 0, run = 1; COND(c[D_CBC_256_AES][j]); count++)
- AES_cbc_encrypt(buf, buf,
- (unsigned long)lengths[j], &aes_ks3,
- iv, AES_ENCRYPT);
+ count = run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs);
d = Time_F(STOP);
- print_result(D_CBC_256_AES, j, count, d);
+ print_result(D_CBC_256_AES, testnum, count, d);
}
}
if (doit[D_IGE_128_AES]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][j],
- lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][testnum],
+ lengths[testnum]);
Time_F(START);
- for (count = 0, run = 1; COND(c[D_IGE_128_AES][j]); count++)
- AES_ige_encrypt(buf, buf2,
- (unsigned long)lengths[j], &aes_ks1,
- iv, AES_ENCRYPT);
+ count = run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs);
d = Time_F(STOP);
- print_result(D_IGE_128_AES, j, count, d);
+ print_result(D_IGE_128_AES, testnum, count, d);
}
}
if (doit[D_IGE_192_AES]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][j],
- lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][testnum],
+ lengths[testnum]);
Time_F(START);
- for (count = 0, run = 1; COND(c[D_IGE_192_AES][j]); count++)
- AES_ige_encrypt(buf, buf2,
- (unsigned long)lengths[j], &aes_ks2,
- iv, AES_ENCRYPT);
+ count = run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs);
d = Time_F(STOP);
- print_result(D_IGE_192_AES, j, count, d);
+ print_result(D_IGE_192_AES, testnum, count, d);
}
}
if (doit[D_IGE_256_AES]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][j],
- lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][testnum],
+ lengths[testnum]);
Time_F(START);
- for (count = 0, run = 1; COND(c[D_IGE_256_AES][j]); count++)
- AES_ige_encrypt(buf, buf2,
- (unsigned long)lengths[j], &aes_ks3,
- iv, AES_ENCRYPT);
+ count = run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs);
d = Time_F(STOP);
- print_result(D_IGE_256_AES, j, count, d);
+ print_result(D_IGE_256_AES, testnum, count, d);
}
}
if (doit[D_GHASH]) {
- GCM128_CONTEXT *ctx =
- CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt);
- CRYPTO_gcm128_setiv(ctx, (unsigned char *)"0123456789ab", 12);
+ for (i = 0; i < loopargs_len; ++i) {
+ loopargs[i].gcm_ctx = CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt);
+ CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx, (unsigned char *)"0123456789ab", 12);
+ }
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_GHASH], c[D_GHASH][j], lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_GHASH], c[D_GHASH][testnum], lengths[testnum]);
Time_F(START);
- for (count = 0, run = 1; COND(c[D_GHASH][j]); count++)
- CRYPTO_gcm128_aad(ctx, buf, lengths[j]);
+ count = run_benchmark(async_jobs, CRYPTO_gcm128_aad_loop, loopargs);
d = Time_F(STOP);
- print_result(D_GHASH, j, count, d);
+ print_result(D_GHASH, testnum, count, d);
}
- CRYPTO_gcm128_release(ctx);
+ for (i = 0; i < loopargs_len; ++i)
+ CRYPTO_gcm128_release(loopargs[i].gcm_ctx);
}
#endif
#ifndef OPENSSL_NO_CAMELLIA
if (doit[D_CBC_128_CML]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][j],
- lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][testnum],
+ lengths[testnum]);
+ if (async_jobs > 0) {
+ BIO_printf(bio_err, "Async mode is not supported, exiting...");
+ exit(1);
+ }
Time_F(START);
- for (count = 0, run = 1; COND(c[D_CBC_128_CML][j]); count++)
- Camellia_cbc_encrypt(buf, buf,
- (unsigned long)lengths[j], &camellia_ks1,
+ for (count = 0, run = 1; COND(c[D_CBC_128_CML][testnum]); count++)
+ Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
+ (unsigned long)lengths[testnum], &camellia_ks1,
iv, CAMELLIA_ENCRYPT);
d = Time_F(STOP);
- print_result(D_CBC_128_CML, j, count, d);
+ print_result(D_CBC_128_CML, testnum, count, d);
}
}
if (doit[D_CBC_192_CML]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][j],
- lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][testnum],
+ lengths[testnum]);
+ if (async_jobs > 0) {
+ BIO_printf(bio_err, "Async mode is not supported, exiting...");
+ exit(1);
+ }
Time_F(START);
- for (count = 0, run = 1; COND(c[D_CBC_192_CML][j]); count++)
- Camellia_cbc_encrypt(buf, buf,
- (unsigned long)lengths[j], &camellia_ks2,
+ for (count = 0, run = 1; COND(c[D_CBC_192_CML][testnum]); count++)
+ Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
+ (unsigned long)lengths[testnum], &camellia_ks2,
iv, CAMELLIA_ENCRYPT);
d = Time_F(STOP);
- print_result(D_CBC_192_CML, j, count, d);
+ print_result(D_CBC_192_CML, testnum, count, d);
}
}
if (doit[D_CBC_256_CML]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][j],
- lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][testnum],
+ lengths[testnum]);
+ if (async_jobs > 0) {
+ BIO_printf(bio_err, "Async mode is not supported, exiting...");
+ exit(1);
+ }
Time_F(START);
- for (count = 0, run = 1; COND(c[D_CBC_256_CML][j]); count++)
- Camellia_cbc_encrypt(buf, buf,
- (unsigned long)lengths[j], &camellia_ks3,
+ for (count = 0, run = 1; COND(c[D_CBC_256_CML][testnum]); count++)
+ Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
+ (unsigned long)lengths[testnum], &camellia_ks3,
iv, CAMELLIA_ENCRYPT);
d = Time_F(STOP);
- print_result(D_CBC_256_CML, j, count, d);
+ print_result(D_CBC_256_CML, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_IDEA
if (doit[D_CBC_IDEA]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][j], lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum], lengths[testnum]);
+ if (async_jobs > 0) {
+ BIO_printf(bio_err, "Async mode is not supported, exiting...");
+ exit(1);
+ }
Time_F(START);
- for (count = 0, run = 1; COND(c[D_CBC_IDEA][j]); count++)
- idea_cbc_encrypt(buf, buf,
- (unsigned long)lengths[j], &idea_ks,
+ for (count = 0, run = 1; COND(c[D_CBC_IDEA][testnum]); count++)
+ idea_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
+ (unsigned long)lengths[testnum], &idea_ks,
iv, IDEA_ENCRYPT);
d = Time_F(STOP);
- print_result(D_CBC_IDEA, j, count, d);
+ print_result(D_CBC_IDEA, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_SEED
if (doit[D_CBC_SEED]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_CBC_SEED], c[D_CBC_SEED][j], lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum], lengths[testnum]);
+ if (async_jobs > 0) {
+ BIO_printf(bio_err, "Async mode is not supported, exiting...");
+ exit(1);
+ }
Time_F(START);
- for (count = 0, run = 1; COND(c[D_CBC_SEED][j]); count++)
- SEED_cbc_encrypt(buf, buf,
- (unsigned long)lengths[j], &seed_ks, iv, 1);
+ for (count = 0, run = 1; COND(c[D_CBC_SEED][testnum]); count++)
+ SEED_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
+ (unsigned long)lengths[testnum], &seed_ks, iv, 1);
d = Time_F(STOP);
- print_result(D_CBC_SEED, j, count, d);
+ print_result(D_CBC_SEED, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_RC2
if (doit[D_CBC_RC2]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_CBC_RC2], c[D_CBC_RC2][j], lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum], lengths[testnum]);
+ if (async_jobs > 0) {
+ BIO_printf(bio_err, "Async mode is not supported, exiting...");
+ exit(1);
+ }
Time_F(START);
- for (count = 0, run = 1; COND(c[D_CBC_RC2][j]); count++)
- RC2_cbc_encrypt(buf, buf,
- (unsigned long)lengths[j], &rc2_ks,
+ for (count = 0, run = 1; COND(c[D_CBC_RC2][testnum]); count++)
+ RC2_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
+ (unsigned long)lengths[testnum], &rc2_ks,
iv, RC2_ENCRYPT);
d = Time_F(STOP);
- print_result(D_CBC_RC2, j, count, d);
+ print_result(D_CBC_RC2, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_RC5
if (doit[D_CBC_RC5]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_CBC_RC5], c[D_CBC_RC5][j], lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum], lengths[testnum]);
+ if (async_jobs > 0) {
+ BIO_printf(bio_err, "Async mode is not supported, exiting...");
+ exit(1);
+ }
Time_F(START);
- for (count = 0, run = 1; COND(c[D_CBC_RC5][j]); count++)
- RC5_32_cbc_encrypt(buf, buf,
- (unsigned long)lengths[j], &rc5_ks,
+ for (count = 0, run = 1; COND(c[D_CBC_RC5][testnum]); count++)
+ RC5_32_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
+ (unsigned long)lengths[testnum], &rc5_ks,
iv, RC5_ENCRYPT);
d = Time_F(STOP);
- print_result(D_CBC_RC5, j, count, d);
+ print_result(D_CBC_RC5, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_BF
if (doit[D_CBC_BF]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_CBC_BF], c[D_CBC_BF][j], lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_CBC_BF], c[D_CBC_BF][testnum], lengths[testnum]);
+ if (async_jobs > 0) {
+ BIO_printf(bio_err, "Async mode is not supported, exiting...");
+ exit(1);
+ }
Time_F(START);
- for (count = 0, run = 1; COND(c[D_CBC_BF][j]); count++)
- BF_cbc_encrypt(buf, buf,
- (unsigned long)lengths[j], &bf_ks,
+ for (count = 0, run = 1; COND(c[D_CBC_BF][testnum]); count++)
+ BF_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
+ (unsigned long)lengths[testnum], &bf_ks,
iv, BF_ENCRYPT);
d = Time_F(STOP);
- print_result(D_CBC_BF, j, count, d);
+ print_result(D_CBC_BF, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_CAST
if (doit[D_CBC_CAST]) {
- for (j = 0; j < SIZE_NUM; j++) {
- print_message(names[D_CBC_CAST], c[D_CBC_CAST][j], lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum], lengths[testnum]);
+ if (async_jobs > 0) {
+ BIO_printf(bio_err, "Async mode is not supported, exiting...");
+ exit(1);
+ }
Time_F(START);
- for (count = 0, run = 1; COND(c[D_CBC_CAST][j]); count++)
- CAST_cbc_encrypt(buf, buf,
- (unsigned long)lengths[j], &cast_ks,
+ for (count = 0, run = 1; COND(c[D_CBC_CAST][testnum]); count++)
+ CAST_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
+ (unsigned long)lengths[testnum], &cast_ks,
iv, CAST_ENCRYPT);
d = Time_F(STOP);
- print_result(D_CBC_CAST, j, count, d);
+ print_result(D_CBC_CAST, testnum, count, d);
}
}
#endif
@@ -1643,70 +2289,65 @@ int speed_main(int argc, char **argv)
OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)));
goto end;
}
+ if (async_jobs > 0) {
+ BIO_printf(bio_err, "Async mode is not supported, exiting...");
+ exit(1);
+ }
multiblock_speed(evp_cipher);
ret = 0;
goto end;
}
#endif
- for (j = 0; j < SIZE_NUM; j++) {
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
if (evp_cipher) {
- EVP_CIPHER_CTX *ctx;
- int outl;
names[D_EVP] = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
/*
* -O3 -fschedule-insns messes up an optimization here!
* names[D_EVP] somehow becomes NULL
*/
- print_message(names[D_EVP], save_count, lengths[j]);
-
- ctx = EVP_CIPHER_CTX_new();
- if (decrypt)
- EVP_DecryptInit_ex(ctx, evp_cipher, NULL, key16, iv);
- else
- EVP_EncryptInit_ex(ctx, evp_cipher, NULL, key16, iv);
- EVP_CIPHER_CTX_set_padding(ctx, 0);
+ print_message(names[D_EVP], save_count, lengths[testnum]);
+
+ for (k = 0; k < loopargs_len; k++) {
+ loopargs[k].ctx = EVP_CIPHER_CTX_new();
+ if (decrypt)
+ EVP_DecryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, key16, iv);
+ else
+ EVP_EncryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, key16, iv);
+ EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0);
+ }
Time_F(START);
- if (decrypt)
- for (count = 0, run = 1;
- COND(save_count * 4 * lengths[0] / lengths[j]);
- count++)
- EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[j]);
- else
- for (count = 0, run = 1;
- COND(save_count * 4 * lengths[0] / lengths[j]);
- count++)
- EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[j]);
- if (decrypt)
- EVP_DecryptFinal_ex(ctx, buf, &outl);
- else
- EVP_EncryptFinal_ex(ctx, buf, &outl);
+ count = run_benchmark(async_jobs, EVP_Update_loop, loopargs);
d = Time_F(STOP);
- EVP_CIPHER_CTX_free(ctx);
+ for (k = 0; k < loopargs_len; k++) {
+ EVP_CIPHER_CTX_free(loopargs[k].ctx);
+ }
}
if (evp_md) {
names[D_EVP] = OBJ_nid2ln(EVP_MD_type(evp_md));
- print_message(names[D_EVP], save_count, lengths[j]);
-
+ print_message(names[D_EVP], save_count, lengths[testnum]);
Time_F(START);
- for (count = 0, run = 1;
- COND(save_count * 4 * lengths[0] / lengths[j]); count++)
- EVP_Digest(buf, lengths[j], &(md[0]), NULL, evp_md, NULL);
-
+ count = run_benchmark(async_jobs, EVP_Digest_loop, loopargs);
d = Time_F(STOP);
}
- print_result(D_EVP, j, count, d);
+ print_result(D_EVP, testnum, count, d);
}
}
- RAND_bytes(buf, 36);
+ for (i = 0; i < loopargs_len; ++i)
+ RAND_bytes(loopargs[i].buf, 36);
+
#ifndef OPENSSL_NO_RSA
- for (j = 0; j < RSA_NUM; j++) {
- int st;
- if (!rsa_doit[j])
+ for (testnum = 0; testnum < RSA_NUM; testnum++) {
+ int st = 0;
+ if (!rsa_doit[testnum])
continue;
- st = RSA_sign(NID_md5_sha1, buf, 36, buf2, &rsa_num, rsa_key[j]);
+ for (i = 0; i < loopargs_len; ++i) {
+ st = RSA_sign(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2, &rsa_num, rsa_key[testnum]);
+ if (st == 0)
+ break;
+ }
if (st == 0) {
BIO_printf(bio_err,
"RSA sign failure. No RSA sign will be done.\n");
@@ -1714,80 +2355,70 @@ int speed_main(int argc, char **argv)
rsa_count = 1;
} else {
pkey_print_message("private", "rsa",
- rsa_c[j][0], rsa_bits[j], RSA_SECONDS);
- /* RSA_blinding_on(rsa_key[j],NULL); */
+ rsa_c[testnum][0], rsa_bits[testnum], RSA_SECONDS);
+ /* RSA_blinding_on(rsa_key[testnum],NULL); */
Time_F(START);
- for (count = 0, run = 1; COND(rsa_c[j][0]); count++) {
- st = RSA_sign(NID_md5_sha1, buf, 36, buf2,
- &rsa_num, rsa_key[j]);
- if (st == 0) {
- BIO_printf(bio_err, "RSA sign failure\n");
- ERR_print_errors(bio_err);
- count = 1;
- break;
- }
- }
+ count = run_benchmark(async_jobs, RSA_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R1:%ld:%d:%.2f\n"
: "%ld %d bit private RSA's in %.2fs\n",
- count, rsa_bits[j], d);
- rsa_results[j][0] = d / (double)count;
+ count, rsa_bits[testnum], d);
+ rsa_results[testnum][0] = d / (double)count;
rsa_count = count;
}
- st = RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[j]);
+ for (i = 0; i < loopargs_len; ++i) {
+ st = RSA_verify(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2, rsa_num, rsa_key[testnum]);
+ if (st <= 0)
+ break;
+ }
if (st <= 0) {
BIO_printf(bio_err,
"RSA verify failure. No RSA verify will be done.\n");
ERR_print_errors(bio_err);
- rsa_doit[j] = 0;
+ rsa_doit[testnum] = 0;
} else {
pkey_print_message("public", "rsa",
- rsa_c[j][1], rsa_bits[j], RSA_SECONDS);
+ rsa_c[testnum][1], rsa_bits[testnum], RSA_SECONDS);
Time_F(START);
- for (count = 0, run = 1; COND(rsa_c[j][1]); count++) {
- st = RSA_verify(NID_md5_sha1, buf, 36, buf2,
- rsa_num, rsa_key[j]);
- if (st <= 0) {
- BIO_printf(bio_err, "RSA verify failure\n");
- ERR_print_errors(bio_err);
- count = 1;
- break;
- }
- }
+ count = run_benchmark(async_jobs, RSA_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R2:%ld:%d:%.2f\n"
: "%ld %d bit public RSA's in %.2fs\n",
- count, rsa_bits[j], d);
- rsa_results[j][1] = d / (double)count;
+ count, rsa_bits[testnum], d);
+ rsa_results[testnum][1] = d / (double)count;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
- for (j++; j < RSA_NUM; j++)
- rsa_doit[j] = 0;
+ for (testnum++; testnum < RSA_NUM; testnum++)
+ rsa_doit[testnum] = 0;
}
}
#endif
- RAND_bytes(buf, 20);
+ for (i = 0; i < loopargs_len; ++i)
+ RAND_bytes(loopargs[i].buf, 36);
+
#ifndef OPENSSL_NO_DSA
if (RAND_status() != 1) {
RAND_seed(rnd_seed, sizeof rnd_seed);
rnd_fake = 1;
}
- for (j = 0; j < DSA_NUM; j++) {
- unsigned int kk;
- int st;
-
- if (!dsa_doit[j])
+ for (testnum = 0; testnum < DSA_NUM; testnum++) {
+ int st = 0;
+ if (!dsa_doit[testnum])
continue;
- /* DSA_generate_key(dsa_key[j]); */
- /* DSA_sign_setup(dsa_key[j],NULL); */
- st = DSA_sign(0, buf, 20, buf2, &kk, dsa_key[j]);
+ /* DSA_generate_key(dsa_key[testnum]); */
+ /* DSA_sign_setup(dsa_key[testnum],NULL); */
+ for (i = 0; i < loopargs_len; ++i) {
+ st = DSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2, &(loopargs[i].siglen), dsa_key[testnum]);
+ if (st == 0)
+ break;
+ }
if (st == 0) {
BIO_printf(bio_err,
"DSA sign failure. No DSA sign will be done.\n");
@@ -1795,57 +2426,45 @@ int speed_main(int argc, char **argv)
rsa_count = 1;
} else {
pkey_print_message("sign", "dsa",
- dsa_c[j][0], dsa_bits[j], DSA_SECONDS);
+ dsa_c[testnum][0], dsa_bits[testnum], DSA_SECONDS);
Time_F(START);
- for (count = 0, run = 1; COND(dsa_c[j][0]); count++) {
- st = DSA_sign(0, buf, 20, buf2, &kk, dsa_key[j]);
- if (st == 0) {
- BIO_printf(bio_err, "DSA sign failure\n");
- ERR_print_errors(bio_err);
- count = 1;
- break;
- }
- }
+ count = run_benchmark(async_jobs, DSA_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R3:%ld:%d:%.2f\n"
: "%ld %d bit DSA signs in %.2fs\n",
- count, dsa_bits[j], d);
- dsa_results[j][0] = d / (double)count;
+ count, dsa_bits[testnum], d);
+ dsa_results[testnum][0] = d / (double)count;
rsa_count = count;
}
- st = DSA_verify(0, buf, 20, buf2, kk, dsa_key[j]);
+ for (i = 0; i < loopargs_len; ++i) {
+ st = DSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2, loopargs[i].siglen, dsa_key[testnum]);
+ if (st <= 0)
+ break;
+ }
if (st <= 0) {
BIO_printf(bio_err,
"DSA verify failure. No DSA verify will be done.\n");
ERR_print_errors(bio_err);
- dsa_doit[j] = 0;
+ dsa_doit[testnum] = 0;
} else {
pkey_print_message("verify", "dsa",
- dsa_c[j][1], dsa_bits[j], DSA_SECONDS);
+ dsa_c[testnum][1], dsa_bits[testnum], DSA_SECONDS);
Time_F(START);
- for (count = 0, run = 1; COND(dsa_c[j][1]); count++) {
- st = DSA_verify(0, buf, 20, buf2, kk, dsa_key[j]);
- if (st <= 0) {
- BIO_printf(bio_err, "DSA verify failure\n");
- ERR_print_errors(bio_err);
- count = 1;
- break;
- }
- }
+ count = run_benchmark(async_jobs, DSA_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R4:%ld:%d:%.2f\n"
: "%ld %d bit DSA verify in %.2fs\n",
- count, dsa_bits[j], d);
- dsa_results[j][1] = d / (double)count;
+ count, dsa_bits[testnum], d);
+ dsa_results[testnum][1] = d / (double)count;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
- for (j++; j < DSA_NUM; j++)
- dsa_doit[j] = 0;
+ for (testnum++; testnum < DSA_NUM; testnum++)
+ dsa_doit[testnum] = 0;
}
}
if (rnd_fake)
@@ -1857,21 +2476,25 @@ int speed_main(int argc, char **argv)
RAND_seed(rnd_seed, sizeof rnd_seed);
rnd_fake = 1;
}
- for (j = 0; j < EC_NUM; j++) {
- int st;
+ for (testnum = 0; testnum < EC_NUM; testnum++) {
+ int st = 0;
- if (!ecdsa_doit[j])
+ if (!ecdsa_doit[testnum])
continue; /* Ignore Curve */
- ecdsa[j] = EC_KEY_new_by_curve_name(test_curves[j]);
- if (ecdsa[j] == NULL) {
+ ecdsa[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]);
+ if (ecdsa[testnum] == NULL) {
BIO_printf(bio_err, "ECDSA failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
- EC_KEY_precompute_mult(ecdsa[j], NULL);
+ EC_KEY_precompute_mult(ecdsa[testnum], NULL);
/* Perform ECDSA signature test */
- EC_KEY_generate_key(ecdsa[j]);
- st = ECDSA_sign(0, buf, 20, ecdsasig, &ecdsasiglen, ecdsa[j]);
+ EC_KEY_generate_key(ecdsa[testnum]);
+ for (i = 0; i < loopargs_len; ++i) {
+ st = ECDSA_sign(0, loopargs[i].buf, 20, loopargs[i].ecdsasig, &(loopargs[i].siglen), ecdsa[testnum]);
+ if (st == 0)
+ break;
+ }
if (st == 0) {
BIO_printf(bio_err,
"ECDSA sign failure. No ECDSA sign will be done.\n");
@@ -1879,64 +2502,49 @@ int speed_main(int argc, char **argv)
rsa_count = 1;
} else {
pkey_print_message("sign", "ecdsa",
- ecdsa_c[j][0],
- test_curves_bits[j], ECDSA_SECONDS);
-
+ ecdsa_c[testnum][0],
+ test_curves_bits[testnum], ECDSA_SECONDS);
Time_F(START);
- for (count = 0, run = 1; COND(ecdsa_c[j][0]); count++) {
- st = ECDSA_sign(0, buf, 20,
- ecdsasig, &ecdsasiglen, ecdsa[j]);
- if (st == 0) {
- BIO_printf(bio_err, "ECDSA sign failure\n");
- ERR_print_errors(bio_err);
- count = 1;
- break;
- }
- }
+ count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R5:%ld:%d:%.2f\n" :
"%ld %d bit ECDSA signs in %.2fs \n",
- count, test_curves_bits[j], d);
- ecdsa_results[j][0] = d / (double)count;
+ count, test_curves_bits[testnum], d);
+ ecdsa_results[testnum][0] = d / (double)count;
rsa_count = count;
}
/* Perform ECDSA verification test */
- st = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[j]);
+ for (i = 0; i < loopargs_len; ++i) {
+ st = ECDSA_verify(0, loopargs[i].buf, 20, loopargs[i].ecdsasig, loopargs[i].siglen, ecdsa[testnum]);
+ if (st != 1)
+ break;
+ }
if (st != 1) {
BIO_printf(bio_err,
"ECDSA verify failure. No ECDSA verify will be done.\n");
ERR_print_errors(bio_err);
- ecdsa_doit[j] = 0;
+ ecdsa_doit[testnum] = 0;
} else {
pkey_print_message("verify", "ecdsa",
- ecdsa_c[j][1],
- test_curves_bits[j], ECDSA_SECONDS);
+ ecdsa_c[testnum][1],
+ test_curves_bits[testnum], ECDSA_SECONDS);
Time_F(START);
- for (count = 0, run = 1; COND(ecdsa_c[j][1]); count++) {
- st = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen,
- ecdsa[j]);
- if (st != 1) {
- BIO_printf(bio_err, "ECDSA verify failure\n");
- ERR_print_errors(bio_err);
- count = 1;
- break;
- }
- }
+ count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R6:%ld:%d:%.2f\n"
: "%ld %d bit ECDSA verify in %.2fs\n",
- count, test_curves_bits[j], d);
- ecdsa_results[j][1] = d / (double)count;
+ count, test_curves_bits[testnum], d);
+ ecdsa_results[testnum][1] = d / (double)count;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
- for (j++; j < EC_NUM; j++)
- ecdsa_doit[j] = 0;
+ for (testnum++; testnum < EC_NUM; testnum++)
+ ecdsa_doit[testnum] = 0;
}
}
}
@@ -1949,19 +2557,19 @@ int speed_main(int argc, char **argv)
RAND_seed(rnd_seed, sizeof rnd_seed);
rnd_fake = 1;
}
- for (j = 0; j < EC_NUM; j++) {
- if (!ecdh_doit[j])
+ for (testnum = 0; testnum < EC_NUM; testnum++) {
+ if (!ecdh_doit[testnum])
continue;
- ecdh_a[j] = EC_KEY_new_by_curve_name(test_curves[j]);
- ecdh_b[j] = EC_KEY_new_by_curve_name(test_curves[j]);
- if ((ecdh_a[j] == NULL) || (ecdh_b[j] == NULL)) {
+ ecdh_a[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]);
+ ecdh_b[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]);
+ if ((ecdh_a[testnum] == NULL) || (ecdh_b[testnum] == NULL)) {
BIO_printf(bio_err, "ECDH failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
/* generate two ECDH key pairs */
- if (!EC_KEY_generate_key(ecdh_a[j]) ||
- !EC_KEY_generate_key(ecdh_b[j])) {
+ if (!EC_KEY_generate_key(ecdh_a[testnum]) ||
+ !EC_KEY_generate_key(ecdh_b[testnum])) {
BIO_printf(bio_err, "ECDH key generation failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
@@ -1971,11 +2579,9 @@ int speed_main(int argc, char **argv)
* hash of result; otherwise, use result (see section 4.8 of
* draft-ietf-tls-ecc-03.txt).
*/
- int field_size, outlen;
- void *(*kdf) (const void *in, size_t inlen, void *out,
- size_t *xoutlen);
+ int field_size;
field_size =
- EC_GROUP_get_degree(EC_KEY_get0_group(ecdh_a[j]));
+ EC_GROUP_get_degree(EC_KEY_get0_group(ecdh_a[testnum]));
if (field_size <= 24 * 8) {
outlen = KDF1_SHA1_len;
kdf = KDF1_SHA1;
@@ -1985,12 +2591,12 @@ int speed_main(int argc, char **argv)
}
secret_size_a =
ECDH_compute_key(secret_a, outlen,
- EC_KEY_get0_public_key(ecdh_b[j]),
- ecdh_a[j], kdf);
+ EC_KEY_get0_public_key(ecdh_b[testnum]),
+ ecdh_a[testnum], kdf);
secret_size_b =
ECDH_compute_key(secret_b, outlen,
- EC_KEY_get0_public_key(ecdh_a[j]),
- ecdh_b[j], kdf);
+ EC_KEY_get0_public_key(ecdh_a[testnum]),
+ ecdh_b[testnum], kdf);
if (secret_size_a != secret_size_b)
ecdh_checks = 0;
else
@@ -2009,28 +2615,24 @@ int speed_main(int argc, char **argv)
}
pkey_print_message("", "ecdh",
- ecdh_c[j][0],
- test_curves_bits[j], ECDH_SECONDS);
+ ecdh_c[testnum][0],
+ test_curves_bits[testnum], ECDH_SECONDS);
Time_F(START);
- for (count = 0, run = 1; COND(ecdh_c[j][0]); count++) {
- ECDH_compute_key(secret_a, outlen,
- EC_KEY_get0_public_key(ecdh_b[j]),
- ecdh_a[j], kdf);
- }
+ count = run_benchmark(async_jobs, ECDH_compute_key_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R7:%ld:%d:%.2f\n" :
"%ld %d-bit ECDH ops in %.2fs\n", count,
- test_curves_bits[j], d);
- ecdh_results[j][0] = d / (double)count;
+ test_curves_bits[testnum], d);
+ ecdh_results[testnum][0] = d / (double)count;
rsa_count = count;
}
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
- for (j++; j < EC_NUM; j++)
- ecdh_doit[j] = 0;
+ for (testnum++; testnum < EC_NUM; testnum++)
+ ecdh_doit[testnum] = 0;
}
}
if (rnd_fake)
@@ -2073,8 +2675,8 @@ int speed_main(int argc, char **argv)
("The 'numbers' are in 1000s of bytes per second processed.\n");
printf("type ");
}
- for (j = 0; j < SIZE_NUM; j++)
- printf(mr ? ":%d" : "%7d bytes", lengths[j]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++)
+ printf(mr ? ":%d" : "%7d bytes", lengths[testnum]);
printf("\n");
}
@@ -2085,22 +2687,22 @@ int speed_main(int argc, char **argv)
printf("+F:%d:%s", k, names[k]);
else
printf("%-13s", names[k]);
- for (j = 0; j < SIZE_NUM; j++) {
- if (results[k][j] > 10000 && !mr)
- printf(" %11.2fk", results[k][j] / 1e3);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ if (results[k][testnum] > 10000 && !mr)
+ printf(" %11.2fk", results[k][testnum] / 1e3);
else
- printf(mr ? ":%.2f" : " %11.2f ", results[k][j]);
+ printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]);
}
printf("\n");
}
#ifndef OPENSSL_NO_RSA
- j = 1;
+ testnum = 1;
for (k = 0; k < RSA_NUM; k++) {
if (!rsa_doit[k])
continue;
- if (j && !mr) {
+ if (testnum && !mr) {
printf("%18ssign verify sign/s verify/s\n", " ");
- j = 0;
+ testnum = 0;
}
if (mr)
printf("+F2:%u:%u:%f:%f\n",
@@ -2112,13 +2714,13 @@ int speed_main(int argc, char **argv)
}
#endif
#ifndef OPENSSL_NO_DSA
- j = 1;
+ testnum = 1;
for (k = 0; k < DSA_NUM; k++) {
if (!dsa_doit[k])
continue;
- if (j && !mr) {
+ if (testnum && !mr) {
printf("%18ssign verify sign/s verify/s\n", " ");
- j = 0;
+ testnum = 0;
}
if (mr)
printf("+F3:%u:%u:%f:%f\n",
@@ -2130,13 +2732,13 @@ int speed_main(int argc, char **argv)
}
#endif
#ifndef OPENSSL_NO_EC
- j = 1;
+ testnum = 1;
for (k = 0; k < EC_NUM; k++) {
if (!ecdsa_doit[k])
continue;
- if (j && !mr) {
+ if (testnum && !mr) {
printf("%30ssign verify sign/s verify/s\n", " ");
- j = 0;
+ testnum = 0;
}
if (mr)
@@ -2153,13 +2755,13 @@ int speed_main(int argc, char **argv)
#endif
#ifndef OPENSSL_NO_EC
- j = 1;
+ testnum = 1;
for (k = 0; k < EC_NUM; k++) {
if (!ecdh_doit[k])
continue;
- if (j && !mr) {
+ if (testnum && !mr) {
printf("%30sop op/s\n", " ");
- j = 0;
+ testnum = 0;
}
if (mr)
printf("+F5:%u:%u:%f:%f\n",
@@ -2178,8 +2780,14 @@ int speed_main(int argc, char **argv)
end:
ERR_print_errors(bio_err);
- OPENSSL_free(buf_malloc);
- OPENSSL_free(buf2_malloc);
+ for (i = 0; i < loopargs_len; ++i) {
+ if (loopargs[i].buf_malloc != NULL)
+ OPENSSL_free(loopargs[i].buf_malloc);
+ if (loopargs[i].buf2_malloc != NULL)
+ OPENSSL_free(loopargs[i].buf2_malloc);
+ }
+ if (loopargs != NULL)
+ OPENSSL_free(loopargs);
#ifndef OPENSSL_NO_RSA
for (i = 0; i < RSA_NUM; i++)
RSA_free(rsa_key[i]);
@@ -2196,6 +2804,8 @@ int speed_main(int argc, char **argv)
EC_KEY_free(ecdh_b[i]);
}
#endif
+ if (async_jobs > 0)
+ ASYNC_cleanup_thread();
return (ret);
}
@@ -2431,7 +3041,7 @@ static void multiblock_speed(const EVP_CIPHER *evp_cipher)
{
static int mblengths[] =
{ 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 };
- int j, count, num = OSSL_NELEM(lengths);
+ int j, count, num = OSSL_NELEM(mblengths);
const char *alg_name;
unsigned char *inp, *out, no_key[32], no_iv[16];
EVP_CIPHER_CTX *ctx;