aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/rc4
diff options
context:
space:
mode:
authorAndy Polyakov <appro@openssl.org>2004-11-21 10:36:25 +0000
committerAndy Polyakov <appro@openssl.org>2004-11-21 10:36:25 +0000
commit376729e1301f82a8f20ce78f36b7107c75720a7c (patch)
tree85c5a915d6d75b5de41f0926c47ab39d6a0f6c23 /crypto/rc4
parent00dd8f6d6e703dadab3c50af84ed55ffff598ddc (diff)
downloadopenssl-376729e1301f82a8f20ce78f36b7107c75720a7c.tar.gz
RC4 tune-up for Intel P4 core, both 32- and 64-bit ones. As it's
apparently impossible to compose blended code with would perform satisfactory on all x86 and x86_64 cores, an extra RC4_CHAR code-path is introduced and P4 core is detected at run-time. This way we keep original performance on non-P4 implementations and turbo-charge P4 performance by factor of 2.8x (on 32-bit core).
Diffstat (limited to 'crypto/rc4')
-rw-r--r--crypto/rc4/asm/rc4-586.pl59
-rwxr-xr-xcrypto/rc4/asm/rc4-amd64.pl29
-rw-r--r--crypto/rc4/rc4_locl.h1
-rw-r--r--crypto/rc4/rc4_skey.c47
4 files changed, 117 insertions, 19 deletions
diff --git a/crypto/rc4/asm/rc4-586.pl b/crypto/rc4/asm/rc4-586.pl
index 7ef889e5a1..dbe3803f55 100644
--- a/crypto/rc4/asm/rc4-586.pl
+++ b/crypto/rc4/asm/rc4-586.pl
@@ -7,10 +7,10 @@ require "x86asm.pl";
&asm_init($ARGV[0],"rc4-586.pl");
-$tx="eax";
-$ty="ebx";
-$x="ecx";
-$y="edx";
+$x="eax";
+$y="ebx";
+$tx="ecx";
+$ty="edx";
$in="esi";
$out="edi";
$d="ebp";
@@ -31,7 +31,7 @@ sub RC4_loop
{
&mov($ty, &swtmp(2));
&cmp($ty, $in);
- &jle(&label("finished"));
+ &jbe(&label("finished"));
&inc($in);
}
else
@@ -39,7 +39,7 @@ sub RC4_loop
&add($ty, 8);
&inc($in);
&cmp($ty, $in);
- &jl(&label("finished"));
+ &jb(&label("finished"));
&mov(&swtmp(2), $ty);
}
}
@@ -88,35 +88,44 @@ sub RC4
&function_begin_B($name,"");
+ &mov($ty,&wparam(1)); # len
+ &cmp($ty,0);
+ &jne(&label("proceed"));
+ &ret();
+ &set_label("proceed");
+
&comment("");
&push("ebp");
&push("ebx");
- &mov( $d, &wparam(0)); # key
- &mov( $ty, &wparam(1)); # num
&push("esi");
&push("edi");
+ &mov( $d, &wparam(0)); # key
+ &mov( $in, &wparam(2));
&mov( $x, &DWP(0,$d,"",1));
&mov( $y, &DWP(4,$d,"",1));
- &mov( $in, &wparam(2));
+ &mov( $out, &wparam(3));
&inc( $x);
&stack_push(3); # 3 temp variables
&add( $d, 8);
&and( $x, 0xff);
+ # detect compressed schedule, see commentary section in rc4_skey.c...
+ &cmp(&DWP(256,$d),-1);
+ &je(&label("RC4_CHAR"));
+
&lea( $ty, &DWP(-8,$ty,$in));
# check for 0 length input
- &mov( $out, &wparam(3));
&mov( &swtmp(2), $ty); # this is now address to exit at
&mov( $tx, &DWP(0,$d,$x,4));
&cmp( $ty, $in);
- &jl( &label("end")); # less than 8 bytes
+ &jb( &label("end")); # less than 8 bytes
&set_label("start");
@@ -148,7 +157,7 @@ sub RC4
&mov( &DWP(-4,$out,"",0), $tx);
&mov( $tx, &DWP(0,$d,$x,4));
&cmp($in, $ty);
- &jle(&label("start"));
+ &jbe(&label("start"));
&set_label("end");
@@ -162,6 +171,32 @@ sub RC4
&RC4_loop(5,0,1);
&RC4_loop(6,1,1);
+ &jmp(&label("finished"));
+
+ &align(16);
+ # this is essentially Intel P4 specific codepath, see rc4_skey.c...
+ &set_label("RC4_CHAR");
+
+ &lea ($ty,&DWP(0,$in,$ty));
+ &mov (&swtmp(2),$ty);
+
+ # strangely enough unrolled loop performs over 20% slower...
+ &set_label("RC4_CHAR_loop");
+ &movz ($tx,&BP(0,$d,$x));
+ &add (&LB($y),&LB($tx));
+ &movz ($ty,&BP(0,$d,$y));
+ &movb (&BP(0,$d,$y),&LB($tx));
+ &movb (&BP(0,$d,$x),&LB($ty));
+ &add (&LB($ty),&LB($tx));
+ &movz ($ty,&BP(0,$d,$ty));
+ &xorb (&LB($ty),&BP(0,$in));
+ &movb (&BP(0,$out),&LB($ty));
+ &inc (&LB($x));
+ &inc ($in);
+ &inc ($out);
+ &cmp ($in,&swtmp(2));
+ &jb (&label("RC4_CHAR_loop"));
+
&set_label("finished");
&dec( $x);
&stack_pop(3);
diff --git a/crypto/rc4/asm/rc4-amd64.pl b/crypto/rc4/asm/rc4-amd64.pl
index cc3f0c0231..35e426d561 100755
--- a/crypto/rc4/asm/rc4-amd64.pl
+++ b/crypto/rc4/asm/rc4-amd64.pl
@@ -25,6 +25,13 @@
# Latter means that if you want to *estimate* what to expect from
# *your* CPU, then multiply 54 by 3.3 and clock frequency in GHz.
+# Intel P4 EM64T core was found to run the AMD64 code really slow...
+# The only way to achieve comparable performance on P4 is to keep
+# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
+# compose blended code, which would perform even within 30% marginal
+# on either AMD and Intel platforms, I implement both cases. See
+# rc4_skey.c for further details...
+
$output=shift;
$win64a=1 if ($output =~ /win64a.[s|asm]/);
@@ -90,6 +97,8 @@ $code.=<<___;
add \$8,$dat
movl `&PTR("DWORD:-8[$dat]")`,$XX#d
movl `&PTR("DWORD:-4[$dat]")`,$YY#d
+ cmpl \$-1,`&PTR("DWORD:256[$dat]")`
+ je .LRC4_CHAR
test \$-8,$len
jz .Lloop1
.align 16
@@ -167,6 +176,24 @@ $code.=<<___;
dec $len
jnz .Lloop1
jmp .Lexit
+
+.align 16
+.LRC4_CHAR:
+ inc $XX#b
+ movzb `&PTR("BYTE:[$dat+$XX]")`,$TX#d
+ add $TX#b,$YY#b
+ movzb `&PTR("BYTE:[$dat+$YY]")`,$TY#d
+ movb $TX#b,`&PTR("BYTE:[$dat+$YY]")`
+ movb $TY#b,`&PTR("BYTE:[$dat+$XX]")`
+ add $TX#b,$TY#b
+ movzb `&PTR("BYTE:[$dat+$TY]")`,$TY#d
+ xorb `&PTR("BYTE:[$inp]")`,$TY#b
+ movb $TY#b,`&PTR("BYTE:[$out]")`
+ inc $inp
+ inc $out
+ dec $len
+ jnz .LRC4_CHAR
+ jmp .Lexit
___
$code.=<<___ if (defined($win64a));
RC4 ENDP
@@ -189,6 +216,8 @@ if (defined($win64a)) {
$code =~ s/mov[bwlq]/mov/gm;
$code =~ s/movzb/movzx/gm;
$code =~ s/repret/DB\t0F3h,0C3h/gm;
+ $code =~ s/cmpl/cmp/gm;
+ $code =~ s/xorb/xor/gm;
} else {
$code =~ s/([QD]*WORD|BYTE)://gm;
$code =~ s/repret/.byte\t0xF3,0xC3/gm;
diff --git a/crypto/rc4/rc4_locl.h b/crypto/rc4/rc4_locl.h
index 3bb80b6ce9..c712e1632e 100644
--- a/crypto/rc4/rc4_locl.h
+++ b/crypto/rc4/rc4_locl.h
@@ -1,4 +1,5 @@
#ifndef HEADER_RC4_LOCL_H
#define HEADER_RC4_LOCL_H
#include <openssl/opensslconf.h>
+#include <cryptlib.h>
#endif
diff --git a/crypto/rc4/rc4_skey.c b/crypto/rc4/rc4_skey.c
index bb10c1ebe2..781ff2d8b9 100644
--- a/crypto/rc4/rc4_skey.c
+++ b/crypto/rc4/rc4_skey.c
@@ -93,25 +93,58 @@ void RC4_set_key(RC4_KEY *key, int len, const unsigned char *data)
unsigned int i;
d= &(key->data[0]);
- for (i=0; i<256; i++)
- d[i]=i;
key->x = 0;
key->y = 0;
id1=id2=0;
-#define SK_LOOP(n) { \
+#define SK_LOOP(d,n) { \
tmp=d[(n)]; \
id2 = (data[id1] + tmp + id2) & 0xff; \
if (++id1 == len) id1=0; \
d[(n)]=d[id2]; \
d[id2]=tmp; }
+#if defined(OPENSSL_CPUID_OBJ) && !defined(OPENSSL_NO_ASM)
+# if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
+ defined(__INTEL__) || \
+ defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64)
+ if (sizeof(RC4_INT) > 1) {
+ /*
+ * Unlike all other x86 [and x86_64] implementations,
+ * Intel P4 core [including EM64T] was found to perform
+ * poorly with wider RC4_INT. Performance improvement
+ * for IA-32 hand-coded assembler turned out to be 2.8x
+ * if re-coded for RC4_CHAR! It's however inappropriate
+ * to just switch to RC4_CHAR for x86[_64], as non-P4
+ * implementations suffer from significant performance
+ * losses then, e.g. PIII exhibits >2x deterioration,
+ * and so does Opteron. In order to assure optimal
+ * all-round performance, let us [try to] detect P4 at
+ * run-time by checking upon HTT bit in CPU capability
+ * vector and set up compressed key schedule, which is
+ * recognized by correspondingly updated assembler
+ * module...
+ * <appro@fy.chalmers.se>
+ */
+ if (OPENSSL_ia32cap_P & (1<<28)) {
+ unsigned char *cp=(unsigned char *)d;
+
+ for (i=0;i<256;i++) cp[i]=i;
+ for (i=0;i<256;i++) SK_LOOP(cp,i);
+ /* mark schedule as compressed! */
+ d[256/sizeof(RC4_INT)]=-1;
+ return;
+ }
+ }
+# endif
+#endif
+ for (i=0; i < 256; i++) d[i]=i;
for (i=0; i < 256; i+=4)
{
- SK_LOOP(i+0);
- SK_LOOP(i+1);
- SK_LOOP(i+2);
- SK_LOOP(i+3);
+ SK_LOOP(d,i+0);
+ SK_LOOP(d,i+1);
+ SK_LOOP(d,i+2);
+ SK_LOOP(d,i+3);
}
}