/* * Written by Rob Percival (robpercival@google.com) for the OpenSSL project. */ /* ==================================================================== * Copyright (c) 2016 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== */ #include #include #include #include #include #include /* * From RFC6962: opaque SerializedSCT<1..2^16-1>; struct { SerializedSCT * sct_list <1..2^16-1>; } SignedCertificateTimestampList; */ # define MAX_SCT_SIZE 65535 # define MAX_SCT_LIST_SIZE MAX_SCT_SIZE /* * Macros to read and write integers in network-byte order. */ #define n2s(c,s) ((s=(((unsigned int)((c)[0]))<< 8)| \ (((unsigned int)((c)[1])) )),c+=2) #define s2n(s,c) ((c[0]=(unsigned char)(((s)>> 8)&0xff), \ c[1]=(unsigned char)(((s) )&0xff)),c+=2) #define l2n3(l,c) ((c[0]=(unsigned char)(((l)>>16)&0xff), \ c[1]=(unsigned char)(((l)>> 8)&0xff), \ c[2]=(unsigned char)(((l) )&0xff)),c+=3) #define n2l8(c,l) (l =((uint64_t)(*((c)++)))<<56, \ l|=((uint64_t)(*((c)++)))<<48, \ l|=((uint64_t)(*((c)++)))<<40, \ l|=((uint64_t)(*((c)++)))<<32, \ l|=((uint64_t)(*((c)++)))<<24, \ l|=((uint64_t)(*((c)++)))<<16, \ l|=((uint64_t)(*((c)++)))<< 8, \ l|=((uint64_t)(*((c)++)))) #define l2n8(l,c) (*((c)++)=(unsigned char)(((l)>>56)&0xff), \ *((c)++)=(unsigned char)(((l)>>48)&0xff), \ *((c)++)=(unsigned char)(((l)>>40)&0xff), \ *((c)++)=(unsigned char)(((l)>>32)&0xff), \ *((c)++)=(unsigned char)(((l)>>24)&0xff), \ *((c)++)=(unsigned char)(((l)>>16)&0xff), \ *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ *((c)++)=(unsigned char)(((l) )&0xff)) /* Signed Certificate Timestamp */ struct sct_st { sct_version_t version; /* If version is not SCT_VERSION_V1, this contains the encoded SCT */ unsigned char *sct; size_t sct_len; /* If version is SCT_VERSION_V1, fields below contain components of the SCT */ unsigned char *log_id; size_t log_id_len; /* * Note, we cannot distinguish between an unset timestamp, and one * that is set to 0. However since CT didn't exist in 1970, no real * SCT should ever be set as such. */ uint64_t timestamp; unsigned char *ext; size_t ext_len; unsigned char hash_alg; unsigned char sig_alg; unsigned char *sig; size_t sig_len; /* Log entry type */ ct_log_entry_type_t entry_type; /* Where this SCT was found, e.g. certificate, OCSP response, etc. */ sct_source_t source; /* The result of the last attempt to validate this SCT. */ sct_validation_status_t validation_status; }; /* Miscellaneous data that is useful when verifying an SCT */ struct sct_ctx_st { /* Public key */ EVP_PKEY *pkey; /* Hash of public key */ unsigned char *pkeyhash; size_t pkeyhashlen; /* For pre-certificate: issuer public key hash */ unsigned char *ihash; size_t ihashlen; /* certificate encoding */ unsigned char *certder; size_t certderlen; /* pre-certificate encoding */ unsigned char *preder; size_t prederlen; }; /* Context when evaluating whether a Certificate Transparency policy is met */ struct ct_policy_eval_ctx_st { X509 *cert; X509 *issuer; CTLOG_STORE *log_store; STACK_OF(SCT) *good_scts; STACK_OF(SCT) *bad_scts; }; /* * Creates a new context for verifying an SCT. */ SCT_CTX *SCT_CTX_new(void); /* * Deletes an SCT verification context. */ void SCT_CTX_free(SCT_CTX *sctx); /* * Sets the certificate that the SCT was created for. * If *cert does not have a poison extension, presigner must be NULL. * If *cert does not have a poison extension, it may have a single SCT * (NID_ct_precert_scts) extension. * If either *cert or *presigner have an AKID (NID_authority_key_identifier) * extension, both must have one. * Returns 1 on success, 0 on failure. */ __owur int SCT_CTX_set1_cert(SCT_CTX *sctx, X509 *cert, X509 *presigner); /* * Sets the issuer of the certificate that the SCT was created for. * This is just a convenience method to save extracting the public key and * calling SCT_CTX_set1_issuer_pubkey(). * Issuer must not be NULL. * Returns 1 on success, 0 on failure. */ __owur int SCT_CTX_set1_issuer(SCT_CTX *sctx, const X509 *issuer); /* * Sets the public key of the issuer of the certificate that the SCT was created * for. * The public key must not be NULL. * Returns 1 on success, 0 on failure. */ __owur int SCT_CTX_set1_issuer_pubkey(SCT_CTX *sctx, X509_PUBKEY *pubkey); /* * Sets the public key of the CT log that the SCT is from. * Returns 1 on success, 0 on failure. */ __owur int SCT_CTX_set1_pubkey(SCT_CTX *sctx, X509_PUBKEY *pubkey); /* * Does this SCT have the minimum fields populated to be usable? * Returns 1 if so, 0 otherwise. */ __owur int SCT_is_complete(const SCT *sct); /* * Does this SCT have the signature-related fields populated? * Returns 1 if so, 0 otherwise. * This checks that the signature and hash algorithms are set to supported * values and that the signature field is set. */ __owur int SCT_signature_is_complete(const SCT *sct); /* * Handlers for Certificate Transparency X509v3/OCSP extensions */ extern const X509V3_EXT_METHOD v3_ct_scts[];