aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/ec/ec_mult.c
blob: e075a1ee07f276ac2063a2f72800f3b233dfdc19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
/* crypto/ec/ec_mult.c */
/* ====================================================================
 * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer. 
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */

#include <openssl/err.h>

#include "ec_lcl.h"


/* TODO: width-m NAFs */

/* TODO: optional precomputation of multiples of the generator */


#define EC_window_bits_for_scalar_size(b) \
		((b) >= 2000 ? 6 : \
		 (b) >=  800 ? 5 : \
		 (b) >=  300 ? 4 : \
		 (b) >=   70 ? 3 : \
		 (b) >=   20 ? 2 : \
		  1)
/* For window size 'w' (w >= 2), we compute the odd multiples
 *      1*P .. (2^w-1)*P.
 * This accounts for  2^(w-1)  point additions (neglecting constants),
 * each of which requires 16 field multiplications (4 squarings
 * and 12 general multiplications) in the case of curves defined
 * over GF(p), which are the only curves we have so far.
 *
 * Converting these precomputed points into affine form takes
 * three field multiplications for inverting Z and one squaring
 * and three multiplications for adjusting X and Y, i.e.
 * 7 multiplications in total (1 squaring and 6 general multiplications),
 * again except for constants.
 *
 * The average number of windows for a 'b' bit scalar is roughly
 *          b/(w+1).
 * Each of these windows (except possibly for the first one, but
 * we are ignoring constants anyway) requires one point addition.
 * As the precomputed table stores points in affine form, these
 * additions take only 11 field multiplications each (3 squarings
 * and 8 general multiplications).
 *
 * So the total workload, except for constants, is
 *
 *        2^(w-1)*[5 squarings + 18 multiplications]
 *      + (b/(w+1))*[3 squarings + 8 multiplications]
 *
 * If we assume that 10 squarings are as costly as 9 multiplications,
 * our task is to find the 'w' that, given 'b', minimizes
 *
 *        2^(w-1)*(5*9 + 18*10) + (b/(w+1))*(3*9 + 8*10)
 *      = 2^(w-1)*225 +           (b/(w+1))*107.
 *
 * Thus optimal window sizes should be roughly as follows:
 *
 *    w >= 6  if         b >= 1414
 *     w = 5  if 1413 >= b >=  505
 *     w = 4  if  504 >= b >=  169
 *     w = 3  if  168 >= b >=   51
 *     w = 2  if   50 >= b >=   13
 *     w = 1  if   12 >= b
 *
 * If we assume instead that squarings are exactly as costly as
 * multiplications, we have to minimize
 *      2^(w-1)*23 + (b/(w+1))*11.
 *
 * This gives us the following (nearly unchanged) table of optimal
 * windows sizes:
 *
 *    w >= 6  if         b >= 1406
 *     w = 5  if 1405 >= b >=  502
 *     w = 4  if  501 >= b >=  168
 *     w = 3  if  167 >= b >=   51
 *     w = 2  if   50 >= b >=   13
 *     w = 1  if   12 >= b
 *
 * Note that neither table tries to take into account memory usage
 * (allocation overhead, code locality etc.).  Actual timings with
 * NIST curves P-192, P-224, and P-256 with scalars of 192, 224,
 * and 256 bits, respectively, show that  w = 3  (instead of 4) is
 * preferrable; timings with NIST curve P-384 and 384-bit scalars
 * confirm that  w = 4  is optimal for this case; and timings with
 * NIST curve P-521 and 521-bit scalars show that  w = 4  (instead
 * of 5) is preferrable.  So we generously round up all the
 * boundaries and use the following table:
 *
 *    w >= 6  if         b >= 2000
 *     w = 5  if 1999 >= b >=  800
 *     w = 4  if  799 >= b >=  300
 *     w = 3  if  299 >= b >=   70
 *     w = 2  if   69 >= b >=   20
 *     w = 1  if   19 >= b
 */



/* Compute
 *      \sum scalars[i]*points[i],
 * also including
 *      scalar*generator
 * in the addition if scalar != NULL
 */
int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
	size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
	{
	BN_CTX *new_ctx = NULL;
	EC_POINT *generator = NULL;
	EC_POINT *tmp = NULL;
	size_t totalnum;
	size_t i, j;
	int k, t;
	int r_is_at_infinity = 1;
	size_t max_bits = 0;
	size_t *wsize = NULL; /* individual window sizes */
	unsigned long *wbits = NULL; /* individual window contents */
	int *wpos = NULL; /* position of bottom bit of current individual windows
	                   * (wpos[i] is valid if wbits[i] != 0) */
	size_t num_val;
	EC_POINT **val = NULL; /* precomputation */
	EC_POINT **v;
	EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' */
	int ret = 0;
	
	if (scalar != NULL)
		{
		generator = EC_GROUP_get0_generator(group);
		if (generator == NULL)
			{
			ECerr(EC_F_EC_POINTS_MUL, EC_R_UNDEFINED_GENERATOR);
			return 0;
			}
		}
	
	for (i = 0; i < num; i++)
		{
		if (group->meth != points[i]->meth)
			{
			ECerr(EC_F_EC_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS);
			return 0;
			}
		}

	totalnum = num + (scalar != NULL);

	wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]);
	wbits = OPENSSL_malloc(totalnum * sizeof wbits[0]);
	wpos = OPENSSL_malloc(totalnum * sizeof wpos[0]);
	if (wsize == NULL || wbits == NULL || wpos == NULL) goto err;

	/* num_val := total number of points to precompute */
	num_val = 0;
	for (i = 0; i < totalnum; i++)
		{
		size_t bits;

		bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
		wsize[i] = EC_window_bits_for_scalar_size(bits);
		num_val += 1u << (wsize[i] - 1);
		if (bits > max_bits)
			max_bits = bits;
		wbits[i] = 0;
		wpos[i] = 0;
		}

	/* all precomputed points go into a single array 'val',
	 * 'val_sub[i]' is a pointer to the subarray for the i-th point */
	val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
	if (val == NULL) goto err;
	val[num_val] = NULL; /* pivot element */

	val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
	if (val_sub == NULL) goto err;

	/* allocate points for precomputation */
	v = val;
	for (i = 0; i < totalnum; i++)
		{
		val_sub[i] = v;
		for (j = 0; j < (1u << (wsize[i] - 1)); j++)
			{
			*v = EC_POINT_new(group);
			if (*v == NULL) goto err;
			v++;
			}
		}
	if (!(v == val + num_val))
		{
		ECerr(EC_F_EC_POINTS_MUL, ERR_R_INTERNAL_ERROR);
		goto err;
		}

	if (ctx == NULL)
		{
		ctx = new_ctx = BN_CTX_new();
		if (ctx == NULL)
			goto err;
		}
	
	tmp = EC_POINT_new(group);
	if (tmp == NULL) goto err;

	/* prepare precomputed values:
	 *    val_sub[i][0] :=     points[i]
	 *    val_sub[i][1] := 3 * points[i]
	 *    val_sub[i][2] := 5 * points[i]
	 *    ...
	 */
	for (i = 0; i < totalnum; i++)
		{
		if (i < num)
			{
			if (!EC_POINT_copy(val_sub[i][0], points[i])) goto err;
			if (scalars[i]->neg)
				{
				if (!EC_POINT_invert(group, val_sub[i][0], ctx)) goto err;
				}
			}
		else
			{
			if (!EC_POINT_copy(val_sub[i][0], generator)) goto err;
			if (scalar->neg)
				{
				if (!EC_POINT_invert(group, val_sub[i][0], ctx)) goto err;
				}
			}

		if (wsize[i] > 1)
			{
			if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) goto err;
			for (j = 1; j < (1u << (wsize[i] - 1)); j++)
				{
				if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err;
				}
			}
		}

#if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
	if (!EC_POINTs_make_affine(group, num_val, val, ctx)) goto err;
#endif

	r_is_at_infinity = 1;

	for (k = max_bits - 1; k >= 0; k--)
		{
		if (!r_is_at_infinity)
			{
			if (!EC_POINT_dbl(group, r, r, ctx)) goto err;
			}
		
		for (i = 0; i < totalnum; i++)
			{
			if (wbits[i] == 0)
				{
				const BIGNUM *s;

				s = i < num ? scalars[i] : scalar;

				if (BN_is_bit_set(s, k))
					{
					/* look at bits  k - wsize[i] + 1 .. k  for this window */
					t = k - wsize[i] + 1;
					while (!BN_is_bit_set(s, t)) /* BN_is_bit_set is false for t < 0 */
						t++;
					wpos[i] = t;
					wbits[i] = 1;
					for (t = k - 1; t >= wpos[i]; t--)
						{
						wbits[i] <<= 1;
						if (BN_is_bit_set(s, t))
							wbits[i]++;
						}
					/* now wbits[i] is the odd bit pattern at bits wpos[i] .. k */
					}
				}
			
			if ((wbits[i] != 0) && (wpos[i] == k))
				{
				if (r_is_at_infinity)
					{
					if (!EC_POINT_copy(r, val_sub[i][wbits[i] >> 1])) goto err;
					r_is_at_infinity = 0;
					}
				else
					{
					if (!EC_POINT_add(group, r, r, val_sub[i][wbits[i] >> 1], ctx)) goto err;
					}
				wbits[i] = 0;
				}
			}
		}

	if (r_is_at_infinity)
		if (!EC_POINT_set_to_infinity(group, r)) goto err;
	
	ret = 1;

 err:
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	if (tmp != NULL)
		EC_POINT_free(tmp);
	if (wsize != NULL)
		OPENSSL_free(wsize);
	if (wbits != NULL)
		OPENSSL_free(wbits);
	if (wpos != NULL)
		OPENSSL_free(wpos);
	if (val != NULL)
		{
		for (v = val; *v != NULL; v++)
			EC_POINT_clear_free(*v);

		OPENSSL_free(val);
		}
	if (val_sub != NULL)
		{
		OPENSSL_free(val_sub);
		}
	return ret;
	}


int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, const EC_POINT *point, const BIGNUM *p_scalar, BN_CTX *ctx)
	{
	const EC_POINT *points[1];
	const BIGNUM *scalars[1];

	points[0] = point;
	scalars[0] = p_scalar;

	return EC_POINTs_mul(group, r, g_scalar, (point != NULL && p_scalar != NULL), points, scalars, ctx);
	}


int EC_GROUP_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
	{
	const EC_POINT *generator;
	BN_CTX *new_ctx = NULL;
	BIGNUM *order;
	int ret = 0;

	generator = EC_GROUP_get0_generator(group);
	if (generator == NULL)
		{
		ECerr(EC_F_EC_GROUP_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
		return 0;
		}

	if (ctx == NULL)
		{
		ctx = new_ctx = BN_CTX_new();
		if (ctx == NULL)
			return 0;
		}
	
	BN_CTX_start(ctx);
	order = BN_CTX_get(ctx);
	if (order == NULL) goto err;
	
	if (!EC_GROUP_get_order(group, order, ctx)) return 0;
	if (BN_is_zero(order))
		{
		ECerr(EC_F_EC_GROUP_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
		goto err;
		}

	/* TODO */

	ret = 1;
	
 err:
	BN_CTX_end(ctx);
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	return ret;
	}