/********************************************************************** struct.c - $Author$ created at: Tue Mar 22 18:44:30 JST 1995 Copyright (C) 1993-2007 Yukihiro Matsumoto **********************************************************************/ #include "id.h" #include "internal.h" #include "internal/class.h" #include "internal/error.h" #include "internal/hash.h" #include "internal/object.h" #include "internal/proc.h" #include "internal/struct.h" #include "internal/symbol.h" #include "vm_core.h" #include "builtin.h" /* only for struct[:field] access */ enum { AREF_HASH_UNIT = 5, AREF_HASH_THRESHOLD = 10 }; /* Note: Data is a stricter version of the Struct: no attr writers & no hash-alike/array-alike behavior. It shares most of the implementation on the C level, but is unrelated on the Ruby level. */ VALUE rb_cStruct; static VALUE rb_cData; static ID id_members, id_back_members, id_keyword_init; static VALUE struct_alloc(VALUE); static inline VALUE struct_ivar_get(VALUE c, ID id) { VALUE orig = c; VALUE ivar = rb_attr_get(c, id); if (!NIL_P(ivar)) return ivar; for (;;) { c = rb_class_superclass(c); if (c == rb_cStruct || c == rb_cData || !RTEST(c)) return Qnil; RUBY_ASSERT(RB_TYPE_P(c, T_CLASS)); ivar = rb_attr_get(c, id); if (!NIL_P(ivar)) { return rb_ivar_set(orig, id, ivar); } } } VALUE rb_struct_s_keyword_init(VALUE klass) { return struct_ivar_get(klass, id_keyword_init); } VALUE rb_struct_s_members(VALUE klass) { VALUE members = struct_ivar_get(klass, id_members); if (NIL_P(members)) { rb_raise(rb_eTypeError, "uninitialized struct"); } if (!RB_TYPE_P(members, T_ARRAY)) { rb_raise(rb_eTypeError, "corrupted struct"); } return members; } VALUE rb_struct_members(VALUE s) { VALUE members = rb_struct_s_members(rb_obj_class(s)); if (RSTRUCT_LEN(s) != RARRAY_LEN(members)) { rb_raise(rb_eTypeError, "struct size differs (%ld required %ld given)", RARRAY_LEN(members), RSTRUCT_LEN(s)); } return members; } static long struct_member_pos_ideal(VALUE name, long mask) { /* (id & (mask/2)) * 2 */ return (SYM2ID(name) >> (ID_SCOPE_SHIFT - 1)) & mask; } static long struct_member_pos_probe(long prev, long mask) { /* (((prev/2) * AREF_HASH_UNIT + 1) & (mask/2)) * 2 */ return (prev * AREF_HASH_UNIT + 2) & mask; } static VALUE struct_set_members(VALUE klass, VALUE /* frozen hidden array */ members) { VALUE back; const long members_length = RARRAY_LEN(members); if (members_length <= AREF_HASH_THRESHOLD) { back = members; } else { long i, j, mask = 64; VALUE name; while (mask < members_length * AREF_HASH_UNIT) mask *= 2; back = rb_ary_hidden_new(mask + 1); rb_ary_store(back, mask, INT2FIX(members_length)); mask -= 2; /* mask = (2**k-1)*2 */ for (i=0; i < members_length; i++) { name = RARRAY_AREF(members, i); j = struct_member_pos_ideal(name, mask); for (;;) { if (!RTEST(RARRAY_AREF(back, j))) { rb_ary_store(back, j, name); rb_ary_store(back, j + 1, INT2FIX(i)); break; } j = struct_member_pos_probe(j, mask); } } OBJ_FREEZE_RAW(back); } rb_ivar_set(klass, id_members, members); rb_ivar_set(klass, id_back_members, back); return members; } static inline int struct_member_pos(VALUE s, VALUE name) { VALUE back = struct_ivar_get(rb_obj_class(s), id_back_members); long j, mask; if (UNLIKELY(NIL_P(back))) { rb_raise(rb_eTypeError, "uninitialized struct"); } if (UNLIKELY(!RB_TYPE_P(back, T_ARRAY))) { rb_raise(rb_eTypeError, "corrupted struct"); } mask = RARRAY_LEN(back); if (mask <= AREF_HASH_THRESHOLD) { if (UNLIKELY(RSTRUCT_LEN(s) != mask)) { rb_raise(rb_eTypeError, "struct size differs (%ld required %ld given)", mask, RSTRUCT_LEN(s)); } for (j = 0; j < mask; j++) { if (RARRAY_AREF(back, j) == name) return (int)j; } return -1; } if (UNLIKELY(RSTRUCT_LEN(s) != FIX2INT(RARRAY_AREF(back, mask-1)))) { rb_raise(rb_eTypeError, "struct size differs (%d required %ld given)", FIX2INT(RARRAY_AREF(back, mask-1)), RSTRUCT_LEN(s)); } mask -= 3; j = struct_member_pos_ideal(name, mask); for (;;) { VALUE e = RARRAY_AREF(back, j); if (e == name) return FIX2INT(RARRAY_AREF(back, j + 1)); if (!RTEST(e)) { return -1; } j = struct_member_pos_probe(j, mask); } } /* * call-seq: * StructClass::members -> array_of_symbols * * Returns the member names of the Struct descendant as an array: * * Customer = Struct.new(:name, :address, :zip) * Customer.members # => [:name, :address, :zip] * */ static VALUE rb_struct_s_members_m(VALUE klass) { VALUE members = rb_struct_s_members(klass); return rb_ary_dup(members); } /* * call-seq: * members -> array_of_symbols * * Returns the member names from +self+ as an array: * * Customer = Struct.new(:name, :address, :zip) * Customer.new.members # => [:name, :address, :zip] * * Related: #to_a. */ static VALUE rb_struct_members_m(VALUE obj) { return rb_struct_s_members_m(rb_obj_class(obj)); } VALUE rb_struct_getmember(VALUE obj, ID id) { VALUE slot = ID2SYM(id); int i = struct_member_pos(obj, slot); if (i != -1) { return RSTRUCT_GET(obj, i); } rb_name_err_raise("`%1$s' is not a struct member", obj, ID2SYM(id)); UNREACHABLE_RETURN(Qnil); } static void rb_struct_modify(VALUE s) { rb_check_frozen(s); } static VALUE anonymous_struct(VALUE klass) { VALUE nstr; nstr = rb_class_new(klass); rb_make_metaclass(nstr, RBASIC(klass)->klass); rb_class_inherited(klass, nstr); return nstr; } static VALUE new_struct(VALUE name, VALUE super) { /* old style: should we warn? */ ID id; name = rb_str_to_str(name); if (!rb_is_const_name(name)) { rb_name_err_raise("identifier %1$s needs to be constant", super, name); } id = rb_to_id(name); if (rb_const_defined_at(super, id)) { rb_warn("redefining constant %"PRIsVALUE"::%"PRIsVALUE, super, name); rb_mod_remove_const(super, ID2SYM(id)); } return rb_define_class_id_under(super, id, super); } NORETURN(static void invalid_struct_pos(VALUE s, VALUE idx)); static void define_aref_method(VALUE nstr, VALUE name, VALUE off) { rb_add_method_optimized(nstr, SYM2ID(name), OPTIMIZED_METHOD_TYPE_STRUCT_AREF, FIX2UINT(off), METHOD_VISI_PUBLIC); } static void define_aset_method(VALUE nstr, VALUE name, VALUE off) { rb_add_method_optimized(nstr, SYM2ID(name), OPTIMIZED_METHOD_TYPE_STRUCT_ASET, FIX2UINT(off), METHOD_VISI_PUBLIC); } static VALUE rb_struct_s_inspect(VALUE klass) { VALUE inspect = rb_class_name(klass); if (RTEST(rb_struct_s_keyword_init(klass))) { rb_str_cat_cstr(inspect, "(keyword_init: true)"); } return inspect; } static VALUE rb_data_s_new(int argc, const VALUE *argv, VALUE klass) { if (rb_keyword_given_p()) { if (argc > 1 || !RB_TYPE_P(argv[0], T_HASH)) { rb_error_arity(argc, 0, 0); } return rb_class_new_instance_pass_kw(argc, argv, klass); } else { VALUE members = struct_ivar_get(klass, id_members); int num_members = RARRAY_LENINT(members); rb_check_arity(argc, 0, num_members); VALUE arg_hash = rb_hash_new_with_size(argc); for (long i=0; i true or falsy value * * Returns +true+ if the class was initialized with keyword_init: true. * Otherwise returns +nil+ or +false+. * * Examples: * Foo = Struct.new(:a) * Foo.keyword_init? # => nil * Bar = Struct.new(:a, keyword_init: true) * Bar.keyword_init? # => true * Baz = Struct.new(:a, keyword_init: false) * Baz.keyword_init? # => false */ static VALUE rb_struct_s_keyword_init_p(VALUE obj) { } #endif #define rb_struct_s_keyword_init_p rb_struct_s_keyword_init static VALUE setup_struct(VALUE nstr, VALUE members) { long i, len; members = struct_set_members(nstr, members); rb_define_alloc_func(nstr, struct_alloc); rb_define_singleton_method(nstr, "new", rb_class_new_instance_pass_kw, -1); rb_define_singleton_method(nstr, "[]", rb_class_new_instance_pass_kw, -1); rb_define_singleton_method(nstr, "members", rb_struct_s_members_m, 0); rb_define_singleton_method(nstr, "inspect", rb_struct_s_inspect, 0); rb_define_singleton_method(nstr, "keyword_init?", rb_struct_s_keyword_init_p, 0); len = RARRAY_LEN(members); for (i=0; i< len; i++) { VALUE sym = RARRAY_AREF(members, i); ID id = SYM2ID(sym); VALUE off = LONG2NUM(i); define_aref_method(nstr, sym, off); define_aset_method(nstr, ID2SYM(rb_id_attrset(id)), off); } return nstr; } static VALUE setup_data(VALUE subclass, VALUE members) { long i, len; members = struct_set_members(subclass, members); rb_define_alloc_func(subclass, struct_alloc); VALUE sclass = rb_singleton_class(subclass); rb_undef_method(sclass, "define"); rb_define_method(sclass, "new", rb_data_s_new, -1); rb_define_method(sclass, "[]", rb_data_s_new, -1); rb_define_method(sclass, "members", rb_struct_s_members_m, 0); rb_define_method(sclass, "inspect", rb_struct_s_inspect, 0); // FIXME: just a separate method?.. len = RARRAY_LEN(members); for (i=0; i< len; i++) { VALUE sym = RARRAY_AREF(members, i); VALUE off = LONG2NUM(i); define_aref_method(subclass, sym, off); } return subclass; } VALUE rb_struct_alloc_noinit(VALUE klass) { return struct_alloc(klass); } static VALUE struct_make_members_list(va_list ar) { char *mem; VALUE ary, list = rb_ident_hash_new(); RBASIC_CLEAR_CLASS(list); while ((mem = va_arg(ar, char*)) != 0) { VALUE sym = rb_sym_intern_ascii_cstr(mem); if (RTEST(rb_hash_has_key(list, sym))) { rb_raise(rb_eArgError, "duplicate member: %s", mem); } rb_hash_aset(list, sym, Qtrue); } ary = rb_hash_keys(list); RBASIC_CLEAR_CLASS(ary); OBJ_FREEZE_RAW(ary); return ary; } static VALUE struct_define_without_accessor(VALUE outer, const char *class_name, VALUE super, rb_alloc_func_t alloc, VALUE members) { VALUE klass; if (class_name) { if (outer) { klass = rb_define_class_under(outer, class_name, super); } else { klass = rb_define_class(class_name, super); } } else { klass = anonymous_struct(super); } struct_set_members(klass, members); if (alloc) { rb_define_alloc_func(klass, alloc); } else { rb_define_alloc_func(klass, struct_alloc); } return klass; } VALUE rb_struct_define_without_accessor_under(VALUE outer, const char *class_name, VALUE super, rb_alloc_func_t alloc, ...) { va_list ar; VALUE members; va_start(ar, alloc); members = struct_make_members_list(ar); va_end(ar); return struct_define_without_accessor(outer, class_name, super, alloc, members); } VALUE rb_struct_define_without_accessor(const char *class_name, VALUE super, rb_alloc_func_t alloc, ...) { va_list ar; VALUE members; va_start(ar, alloc); members = struct_make_members_list(ar); va_end(ar); return struct_define_without_accessor(0, class_name, super, alloc, members); } VALUE rb_struct_define(const char *name, ...) { va_list ar; VALUE st, ary; va_start(ar, name); ary = struct_make_members_list(ar); va_end(ar); if (!name) st = anonymous_struct(rb_cStruct); else st = new_struct(rb_str_new2(name), rb_cStruct); return setup_struct(st, ary); } VALUE rb_struct_define_under(VALUE outer, const char *name, ...) { va_list ar; VALUE ary; va_start(ar, name); ary = struct_make_members_list(ar); va_end(ar); return setup_struct(rb_define_class_under(outer, name, rb_cStruct), ary); } /* * call-seq: * Struct.new(*member_names, keyword_init: nil){|Struct_subclass| ... } -> Struct_subclass * Struct.new(class_name, *member_names, keyword_init: nil){|Struct_subclass| ... } -> Struct_subclass * Struct_subclass.new(*member_names) -> Struct_subclass_instance * Struct_subclass.new(**member_names) -> Struct_subclass_instance * * Struct.new returns a new subclass of +Struct+. The new subclass: * * - May be anonymous, or may have the name given by +class_name+. * - May have members as given by +member_names+. * - May have initialization via ordinary arguments, or via keyword arguments * * The new subclass has its own method ::new; thus: * * Foo = Struct.new('Foo', :foo, :bar) # => Struct::Foo * f = Foo.new(0, 1) # => # * * \Class Name * * With string argument +class_name+, * returns a new subclass of +Struct+ named Struct::class_name: * * Foo = Struct.new('Foo', :foo, :bar) # => Struct::Foo * Foo.name # => "Struct::Foo" * Foo.superclass # => Struct * * Without string argument +class_name+, * returns a new anonymous subclass of +Struct+: * * Struct.new(:foo, :bar).name # => nil * * Block * * With a block given, the created subclass is yielded to the block: * * Customer = Struct.new('Customer', :name, :address) do |new_class| * p "The new subclass is #{new_class}" * def greeting * "Hello #{name} at #{address}" * end * end # => Struct::Customer * dave = Customer.new('Dave', '123 Main') * dave # => # * dave.greeting # => "Hello Dave at 123 Main" * * Output, from Struct.new: * * "The new subclass is Struct::Customer" * * Member Names * * Symbol arguments +member_names+ * determines the members of the new subclass: * * Struct.new(:foo, :bar).members # => [:foo, :bar] * Struct.new('Foo', :foo, :bar).members # => [:foo, :bar] * * The new subclass has instance methods corresponding to +member_names+: * * Foo = Struct.new('Foo', :foo, :bar) * Foo.instance_methods(false) # => [:foo, :bar, :foo=, :bar=] * f = Foo.new # => # * f.foo # => nil * f.foo = 0 # => 0 * f.bar # => nil * f.bar = 1 # => 1 * f # => # * * Singleton Methods * * A subclass returned by Struct.new has these singleton methods: * * - \Method ::new creates an instance of the subclass: * * Foo.new # => # * Foo.new(0) # => # * Foo.new(0, 1) # => # * Foo.new(0, 1, 2) # Raises ArgumentError: struct size differs * * # Initialization with keyword arguments: * Foo.new(foo: 0) # => # * Foo.new(foo: 0, bar: 1) # => # * Foo.new(foo: 0, bar: 1, baz: 2) * # Raises ArgumentError: unknown keywords: baz * * - \Method :inspect returns a string representation of the subclass: * * Foo.inspect * # => "Struct::Foo" * * - \Method ::members returns an array of the member names: * * Foo.members # => [:foo, :bar] * * Keyword Argument * * By default, the arguments for initializing an instance of the new subclass * can be both positional and keyword arguments. * * Optional keyword argument keyword_init: allows to force only one * type of arguments to be accepted: * * KeywordsOnly = Struct.new(:foo, :bar, keyword_init: true) * KeywordsOnly.new(bar: 1, foo: 0) * # => # * KeywordsOnly.new(0, 1) * # Raises ArgumentError: wrong number of arguments * * PositionalOnly = Struct.new(:foo, :bar, keyword_init: false) * PositionalOnly.new(0, 1) * # => # * PositionalOnly.new(bar: 1, foo: 0) * # => #1, :bar=>2}, bar=nil> * # Note that no error is raised, but arguments treated as one hash value * * # Same as not providing keyword_init: * Any = Struct.new(:foo, :bar, keyword_init: nil) * Any.new(foo: 1, bar: 2) * # => # * Any.new(1, 2) * # => # */ static VALUE rb_struct_s_def(int argc, VALUE *argv, VALUE klass) { VALUE name = Qnil, rest, keyword_init = Qnil; long i; VALUE st; VALUE opt; argc = rb_scan_args(argc, argv, "0*:", NULL, &opt); if (argc >= 1 && !SYMBOL_P(argv[0])) { name = argv[0]; --argc; ++argv; } if (!NIL_P(opt)) { static ID keyword_ids[1]; if (!keyword_ids[0]) { keyword_ids[0] = rb_intern("keyword_init"); } rb_get_kwargs(opt, keyword_ids, 0, 1, &keyword_init); if (UNDEF_P(keyword_init)) { keyword_init = Qnil; } else if (RTEST(keyword_init)) { keyword_init = Qtrue; } } rest = rb_ident_hash_new(); RBASIC_CLEAR_CLASS(rest); for (i=0; iself, &key); if (i < 0) { if (NIL_P(args->unknown_keywords)) { args->unknown_keywords = rb_ary_new(); } rb_ary_push(args->unknown_keywords, key); } else { rb_struct_modify(args->self); RSTRUCT_SET(args->self, i, val); } return ST_CONTINUE; } static VALUE rb_struct_initialize_m(int argc, const VALUE *argv, VALUE self) { VALUE klass = rb_obj_class(self); rb_struct_modify(self); long n = num_members(klass); if (argc == 0) { rb_mem_clear((VALUE *)RSTRUCT_CONST_PTR(self), n); return Qnil; } bool keyword_init = false; switch (rb_struct_s_keyword_init(klass)) { default: if (argc > 1 || !RB_TYPE_P(argv[0], T_HASH)) { rb_error_arity(argc, 0, 0); } keyword_init = true; break; case Qfalse: break; case Qnil: if (argc > 1 || !RB_TYPE_P(argv[0], T_HASH)) { break; } keyword_init = rb_keyword_given_p(); break; } if (keyword_init) { struct struct_hash_set_arg arg; rb_mem_clear((VALUE *)RSTRUCT_CONST_PTR(self), n); arg.self = self; arg.unknown_keywords = Qnil; rb_hash_foreach(argv[0], struct_hash_set_i, (VALUE)&arg); if (arg.unknown_keywords != Qnil) { rb_raise(rb_eArgError, "unknown keywords: %s", RSTRING_PTR(rb_ary_join(arg.unknown_keywords, rb_str_new2(", ")))); } } else { if (n < argc) { rb_raise(rb_eArgError, "struct size differs"); } for (long i=0; i argc) { rb_mem_clear((VALUE *)RSTRUCT_CONST_PTR(self)+argc, n-argc); } } return Qnil; } VALUE rb_struct_initialize(VALUE self, VALUE values) { rb_struct_initialize_m(RARRAY_LENINT(values), RARRAY_CONST_PTR(values), self); if (rb_obj_is_kind_of(self, rb_cData)) OBJ_FREEZE_RAW(self); RB_GC_GUARD(values); return Qnil; } static VALUE * struct_heap_alloc(VALUE st, size_t len) { return ALLOC_N(VALUE, len); } static VALUE struct_alloc(VALUE klass) { long n = num_members(klass); size_t embedded_size = offsetof(struct RStruct, as.ary) + (sizeof(VALUE) * n); VALUE flags = T_STRUCT | (RGENGC_WB_PROTECTED_STRUCT ? FL_WB_PROTECTED : 0); if (n > 0 && rb_gc_size_allocatable_p(embedded_size)) { flags |= n << RSTRUCT_EMBED_LEN_SHIFT; NEWOBJ_OF(st, struct RStruct, klass, flags, embedded_size, 0); rb_mem_clear((VALUE *)st->as.ary, n); return (VALUE)st; } else { NEWOBJ_OF(st, struct RStruct, klass, flags, sizeof(struct RStruct), 0); st->as.heap.ptr = struct_heap_alloc((VALUE)st, n); rb_mem_clear((VALUE *)st->as.heap.ptr, n); st->as.heap.len = n; return (VALUE)st; } } VALUE rb_struct_alloc(VALUE klass, VALUE values) { return rb_class_new_instance(RARRAY_LENINT(values), RARRAY_CONST_PTR(values), klass); } VALUE rb_struct_new(VALUE klass, ...) { VALUE tmpargs[16], *mem = tmpargs; int size, i; va_list args; size = rb_long2int(num_members(klass)); if (size > numberof(tmpargs)) { tmpargs[0] = rb_ary_hidden_new(size); mem = RARRAY_PTR(tmpargs[0]); } va_start(args, klass); for (i=0; i self * each -> enumerator * * Calls the given block with the value of each member; returns +self+: * * Customer = Struct.new(:name, :address, :zip) * joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) * joe.each {|value| p value } * * Output: * * "Joe Smith" * "123 Maple, Anytown NC" * 12345 * * Returns an Enumerator if no block is given. * * Related: #each_pair. */ static VALUE rb_struct_each(VALUE s) { long i; RETURN_SIZED_ENUMERATOR(s, 0, 0, struct_enum_size); for (i=0; i self * each_pair -> enumerator * * Calls the given block with each member name/value pair; returns +self+: * * Customer = Struct.new(:name, :address, :zip) # => Customer * joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) * joe.each_pair {|(name, value)| p "#{name} => #{value}" } * * Output: * * "name => Joe Smith" * "address => 123 Maple, Anytown NC" * "zip => 12345" * * Returns an Enumerator if no block is given. * * Related: #each. * */ static VALUE rb_struct_each_pair(VALUE s) { VALUE members; long i; RETURN_SIZED_ENUMERATOR(s, 0, 0, struct_enum_size); members = rb_struct_members(s); if (rb_block_pair_yield_optimizable()) { for (i=0; i"); } members = rb_struct_members(s); len = RSTRUCT_LEN(s); for (i=0; i 0) { rb_str_cat2(str, ", "); } else if (first != '#') { rb_str_cat2(str, " "); } slot = RARRAY_AREF(members, i); id = SYM2ID(slot); if (rb_is_local_id(id) || rb_is_const_id(id)) { rb_str_append(str, rb_id2str(id)); } else { rb_str_append(str, rb_inspect(slot)); } rb_str_cat2(str, "="); rb_str_append(str, rb_inspect(RSTRUCT_GET(s, i))); } rb_str_cat2(str, ">"); return str; } /* * call-seq: * inspect -> string * * Returns a string representation of +self+: * * Customer = Struct.new(:name, :address, :zip) # => Customer * joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) * joe.inspect # => "#" * */ static VALUE rb_struct_inspect(VALUE s) { return rb_exec_recursive(inspect_struct, s, rb_str_new2("# array * * Returns the values in +self+ as an array: * * Customer = Struct.new(:name, :address, :zip) * joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) * joe.to_a # => ["Joe Smith", "123 Maple, Anytown NC", 12345] * * Related: #members. */ static VALUE rb_struct_to_a(VALUE s) { return rb_ary_new4(RSTRUCT_LEN(s), RSTRUCT_CONST_PTR(s)); } /* * call-seq: * to_h -> hash * to_h {|name, value| ... } -> hash * * Returns a hash containing the name and value for each member: * * Customer = Struct.new(:name, :address, :zip) * joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) * h = joe.to_h * h # => {:name=>"Joe Smith", :address=>"123 Maple, Anytown NC", :zip=>12345} * * If a block is given, it is called with each name/value pair; * the block should return a 2-element array whose elements will become * a key/value pair in the returned hash: * * h = joe.to_h{|name, value| [name.upcase, value.to_s.upcase]} * h # => {:NAME=>"JOE SMITH", :ADDRESS=>"123 MAPLE, ANYTOWN NC", :ZIP=>"12345"} * * Raises ArgumentError if the block returns an inappropriate value. * */ static VALUE rb_struct_to_h(VALUE s) { VALUE h = rb_hash_new_with_size(RSTRUCT_LEN(s)); VALUE members = rb_struct_members(s); long i; int block_given = rb_block_given_p(); for (i=0; i hash * * Returns a hash of the name/value pairs for the given member names. * * Customer = Struct.new(:name, :address, :zip) * joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) * h = joe.deconstruct_keys([:zip, :address]) * h # => {:zip=>12345, :address=>"123 Maple, Anytown NC"} * * Returns all names and values if +array_of_names+ is +nil+: * * h = joe.deconstruct_keys(nil) * h # => {:name=>"Joseph Smith, Jr.", :address=>"123 Maple, Anytown NC", :zip=>12345} * */ static VALUE rb_struct_deconstruct_keys(VALUE s, VALUE keys) { VALUE h; long i; if (NIL_P(keys)) { return rb_struct_to_h(s); } if (UNLIKELY(!RB_TYPE_P(keys, T_ARRAY))) { rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (expected Array or nil)", rb_obj_class(keys)); } if (RSTRUCT_LEN(s) < RARRAY_LEN(keys)) { return rb_hash_new_with_size(0); } h = rb_hash_new_with_size(RARRAY_LEN(keys)); for (i=0; i object * struct[n] -> object * * Returns a value from +self+. * * With symbol or string argument +name+ given, returns the value for the named member: * * Customer = Struct.new(:name, :address, :zip) * joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) * joe[:zip] # => 12345 * * Raises NameError if +name+ is not the name of a member. * * With integer argument +n+ given, returns self.values[n] * if +n+ is in range; * see Array@Array+Indexes: * * joe[2] # => 12345 * joe[-2] # => "123 Maple, Anytown NC" * * Raises IndexError if +n+ is out of range. * */ VALUE rb_struct_aref(VALUE s, VALUE idx) { int i = rb_struct_pos(s, &idx); if (i < 0) invalid_struct_pos(s, idx); return RSTRUCT_GET(s, i); } /* * call-seq: * struct[name] = value -> value * struct[n] = value -> value * * Assigns a value to a member. * * With symbol or string argument +name+ given, assigns the given +value+ * to the named member; returns +value+: * * Customer = Struct.new(:name, :address, :zip) * joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) * joe[:zip] = 54321 # => 54321 * joe # => # * * Raises NameError if +name+ is not the name of a member. * * With integer argument +n+ given, assigns the given +value+ * to the +n+-th member if +n+ is in range; * see Array@Array+Indexes: * * joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) * joe[2] = 54321 # => 54321 * joe[-3] = 'Joseph Smith' # => "Joseph Smith" * joe # => # * * Raises IndexError if +n+ is out of range. * */ VALUE rb_struct_aset(VALUE s, VALUE idx, VALUE val) { int i = rb_struct_pos(s, &idx); if (i < 0) invalid_struct_pos(s, idx); rb_struct_modify(s); RSTRUCT_SET(s, i, val); return val; } FUNC_MINIMIZED(VALUE rb_struct_lookup(VALUE s, VALUE idx)); NOINLINE(static VALUE rb_struct_lookup_default(VALUE s, VALUE idx, VALUE notfound)); VALUE rb_struct_lookup(VALUE s, VALUE idx) { return rb_struct_lookup_default(s, idx, Qnil); } static VALUE rb_struct_lookup_default(VALUE s, VALUE idx, VALUE notfound) { int i = rb_struct_pos(s, &idx); if (i < 0) return notfound; return RSTRUCT_GET(s, i); } static VALUE struct_entry(VALUE s, long n) { return rb_struct_aref(s, LONG2NUM(n)); } /* * call-seq: * values_at(*integers) -> array * values_at(integer_range) -> array * * Returns an array of values from +self+. * * With integer arguments +integers+ given, * returns an array containing each value given by one of +integers+: * * Customer = Struct.new(:name, :address, :zip) * joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) * joe.values_at(0, 2) # => ["Joe Smith", 12345] * joe.values_at(2, 0) # => [12345, "Joe Smith"] * joe.values_at(2, 1, 0) # => [12345, "123 Maple, Anytown NC", "Joe Smith"] * joe.values_at(0, -3) # => ["Joe Smith", "Joe Smith"] * * Raises IndexError if any of +integers+ is out of range; * see Array@Array+Indexes. * * With integer range argument +integer_range+ given, * returns an array containing each value given by the elements of the range; * fills with +nil+ values for range elements larger than the structure: * * joe.values_at(0..2) * # => ["Joe Smith", "123 Maple, Anytown NC", 12345] * joe.values_at(-3..-1) * # => ["Joe Smith", "123 Maple, Anytown NC", 12345] * joe.values_at(1..4) # => ["123 Maple, Anytown NC", 12345, nil, nil] * * Raises RangeError if any element of the range is negative and out of range; * see Array@Array+Indexes. * */ static VALUE rb_struct_values_at(int argc, VALUE *argv, VALUE s) { return rb_get_values_at(s, RSTRUCT_LEN(s), argc, argv, struct_entry); } /* * call-seq: * select {|value| ... } -> array * select -> enumerator * * With a block given, returns an array of values from +self+ * for which the block returns a truthy value: * * Customer = Struct.new(:name, :address, :zip) * joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) * a = joe.select {|value| value.is_a?(String) } * a # => ["Joe Smith", "123 Maple, Anytown NC"] * a = joe.select {|value| value.is_a?(Integer) } * a # => [12345] * * With no block given, returns an Enumerator. */ static VALUE rb_struct_select(int argc, VALUE *argv, VALUE s) { VALUE result; long i; rb_check_arity(argc, 0, 0); RETURN_SIZED_ENUMERATOR(s, 0, 0, struct_enum_size); result = rb_ary_new(); for (i = 0; i < RSTRUCT_LEN(s); i++) { if (RTEST(rb_yield(RSTRUCT_GET(s, i)))) { rb_ary_push(result, RSTRUCT_GET(s, i)); } } return result; } static VALUE recursive_equal(VALUE s, VALUE s2, int recur) { long i, len; if (recur) return Qtrue; /* Subtle! */ len = RSTRUCT_LEN(s); for (i=0; i true or false * * Returns +true+ if and only if the following are true; otherwise returns +false+: * * - other.class == self.class. * - For each member name +name+, other.name == self.name. * * Examples: * * Customer = Struct.new(:name, :address, :zip) * joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) * joe_jr = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) * joe_jr == joe # => true * joe_jr[:name] = 'Joe Smith, Jr.' * # => "Joe Smith, Jr." * joe_jr == joe # => false */ static VALUE rb_struct_equal(VALUE s, VALUE s2) { if (s == s2) return Qtrue; if (!RB_TYPE_P(s2, T_STRUCT)) return Qfalse; if (rb_obj_class(s) != rb_obj_class(s2)) return Qfalse; if (RSTRUCT_LEN(s) != RSTRUCT_LEN(s2)) { rb_bug("inconsistent struct"); /* should never happen */ } return rb_exec_recursive_paired(recursive_equal, s, s2, s2); } /* * call-seq: * hash -> integer * * Returns the integer hash value for +self+. * * Two structs of the same class and with the same content * will have the same hash code (and will compare using Struct#eql?): * * Customer = Struct.new(:name, :address, :zip) * joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) * joe_jr = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) * joe.hash == joe_jr.hash # => true * joe_jr[:name] = 'Joe Smith, Jr.' * joe.hash == joe_jr.hash # => false * * Related: Object#hash. */ static VALUE rb_struct_hash(VALUE s) { long i, len; st_index_t h; VALUE n; h = rb_hash_start(rb_hash(rb_obj_class(s))); len = RSTRUCT_LEN(s); for (i = 0; i < len; i++) { n = rb_hash(RSTRUCT_GET(s, i)); h = rb_hash_uint(h, NUM2LONG(n)); } h = rb_hash_end(h); return ST2FIX(h); } static VALUE recursive_eql(VALUE s, VALUE s2, int recur) { long i, len; if (recur) return Qtrue; /* Subtle! */ len = RSTRUCT_LEN(s); for (i=0; i true or false * * Returns +true+ if and only if the following are true; otherwise returns +false+: * * - other.class == self.class. * - For each member name +name+, other.name.eql?(self.name). * * Customer = Struct.new(:name, :address, :zip) * joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) * joe_jr = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) * joe_jr.eql?(joe) # => true * joe_jr[:name] = 'Joe Smith, Jr.' * joe_jr.eql?(joe) # => false * * Related: Object#==. */ static VALUE rb_struct_eql(VALUE s, VALUE s2) { if (s == s2) return Qtrue; if (!RB_TYPE_P(s2, T_STRUCT)) return Qfalse; if (rb_obj_class(s) != rb_obj_class(s2)) return Qfalse; if (RSTRUCT_LEN(s) != RSTRUCT_LEN(s2)) { rb_bug("inconsistent struct"); /* should never happen */ } return rb_exec_recursive_paired(recursive_eql, s, s2, s2); } /* * call-seq: * size -> integer * * Returns the number of members. * * Customer = Struct.new(:name, :address, :zip) * joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) * joe.size #=> 3 * */ VALUE rb_struct_size(VALUE s) { return LONG2FIX(RSTRUCT_LEN(s)); } /* * call-seq: * dig(name, *identifiers) -> object * dig(n, *identifiers) -> object * * Finds and returns an object among nested objects. * The nested objects may be instances of various classes. * See {Dig Methods}[rdoc-ref:dig_methods.rdoc]. * * * Given symbol or string argument +name+, * returns the object that is specified by +name+ and +identifiers+: * * Foo = Struct.new(:a) * f = Foo.new(Foo.new({b: [1, 2, 3]})) * f.dig(:a) # => #[1, 2, 3]}> * f.dig(:a, :a) # => {:b=>[1, 2, 3]} * f.dig(:a, :a, :b) # => [1, 2, 3] * f.dig(:a, :a, :b, 0) # => 1 * f.dig(:b, 0) # => nil * * Given integer argument +n+, * returns the object that is specified by +n+ and +identifiers+: * * f.dig(0) # => #[1, 2, 3]}> * f.dig(0, 0) # => {:b=>[1, 2, 3]} * f.dig(0, 0, :b) # => [1, 2, 3] * f.dig(0, 0, :b, 0) # => 1 * f.dig(:b, 0) # => nil * */ static VALUE rb_struct_dig(int argc, VALUE *argv, VALUE self) { rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); self = rb_struct_lookup(self, *argv); if (!--argc) return self; ++argv; return rb_obj_dig(argc, argv, self, Qnil); } /* * Document-class: Data * * \Class \Data provides a convenient way to define simple classes * for value-alike objects. * * The simplest example of usage: * * Measure = Data.define(:amount, :unit) * * # Positional arguments constructor is provided * distance = Measure.new(100, 'km') * #=> # * * # Keyword arguments constructor is provided * weight = Measure.new(amount: 50, unit: 'kg') * #=> # * * # Alternative form to construct an object: * speed = Measure[10, 'mPh'] * #=> # * * # Works with keyword arguments, too: * area = Measure[amount: 1.5, unit: 'm^2'] * #=> # * * # Argument accessors are provided: * distance.amount #=> 100 * distance.unit #=> "km" * * Constructed object also has a reasonable definitions of #== * operator, #to_h hash conversion, and #deconstruct / #deconstruct_keys * to be used in pattern matching. * * ::define method accepts an optional block and evaluates it in * the context of the newly defined class. That allows to define * additional methods: * * Measure = Data.define(:amount, :unit) do * def <=>(other) * return unless other.is_a?(self.class) && other.unit == unit * amount <=> other.amount * end * * include Comparable * end * * Measure[3, 'm'] < Measure[5, 'm'] #=> true * Measure[3, 'm'] < Measure[5, 'kg'] * # comparison of Measure with Measure failed (ArgumentError) * * Data provides no member writers, or enumerators: it is meant * to be a storage for immutable atomic values. But note that * if some of data members is of a mutable class, Data does no additional * immutability enforcement: * * Event = Data.define(:time, :weekdays) * event = Event.new('18:00', %w[Tue Wed Fri]) * #=> # * * # There is no #time= or #weekdays= accessors, but changes are * # still possible: * event.weekdays << 'Sat' * event * #=> # * * See also Struct, which is a similar concept, but has more * container-alike API, allowing to change contents of the object * and enumerate it. */ /* * call-seq: * define(*symbols) -> class * * Defines a new \Data class. * * measure = Data.define(:amount, :unit) * #=> # * measure.new(1, 'km') * #=> # * * # It you store the new class in the constant, it will * # affect #inspect and will be more natural to use: * Measure = Data.define(:amount, :unit) * #=> Measure * Measure.new(1, 'km') * #=> # * * * Note that member-less \Data is acceptable and might be a useful technique * for defining several homogenous data classes, like * * class HTTPFetcher * Response = Data.define(:body) * NotFound = Data.define * # ... implementation * end * * Now, different kinds of responses from +HTTPFetcher+ would have consistent * representation: * * # * # * * And are convenient to use in pattern matching: * * case fetcher.get(url) * in HTTPFetcher::Response(body) * # process body variable * in HTTPFetcher::NotFound * # handle not found case * end */ static VALUE rb_data_s_def(int argc, VALUE *argv, VALUE klass) { VALUE rest; long i; VALUE data_class; rest = rb_ident_hash_new(); RBASIC_CLEAR_CLASS(rest); for (i=0; i array_of_symbols * * Returns an array of member names of the data class: * * Measure = Data.define(:amount, :unit) * Measure.members # => [:amount, :unit] * */ #define rb_data_s_members_m rb_struct_s_members_m /* * call-seq: * new(*args) -> instance * new(**kwargs) -> instance * ::[](*args) -> instance * ::[](**kwargs) -> instance * * Constructors for classes defined with ::define accept both positional and * keyword arguments. * * Measure = Data.define(:amount, :unit) * * Measure.new(1, 'km') * #=> # * Measure.new(amount: 1, unit: 'km') * #=> # * * # Alternative shorter initialization with [] * Measure[1, 'km'] * #=> # * Measure[amount: 1, unit: 'km'] * #=> # * * All arguments are mandatory (unlike Struct), and converted to keyword arguments: * * Measure.new(amount: 1) * # in `initialize': missing keyword: :unit (ArgumentError) * * Measure.new(1) * # in `initialize': missing keyword: :unit (ArgumentError) * * Note that Measure#initialize always receives keyword arguments, and that * mandatory arguments are checked in +initialize+, not in +new+. This can be * important for redefining initialize in order to convert arguments or provide * defaults: * * Measure = Data.define(:amount, :unit) do * NONE = Data.define * * def initialize(amount:, unit: NONE.new) * super(amount: Float(amount), unit:) * end * end * * Measure.new('10', 'km') # => # * Measure.new(10_000) # => #> * */ static VALUE rb_data_initialize_m(int argc, const VALUE *argv, VALUE self) { VALUE klass = rb_obj_class(self); rb_struct_modify(self); VALUE members = struct_ivar_get(klass, id_members); size_t num_members = RARRAY_LEN(members); if (argc == 0) { if (num_members > 0) { rb_exc_raise(rb_keyword_error_new("missing", members)); } return Qnil; } if (argc > 1 || !RB_TYPE_P(argv[0], T_HASH)) { rb_error_arity(argc, 0, 0); } if (RHASH_SIZE(argv[0]) < num_members) { VALUE missing = rb_ary_diff(members, rb_hash_keys(argv[0])); rb_exc_raise(rb_keyword_error_new("missing", missing)); } struct struct_hash_set_arg arg; rb_mem_clear((VALUE *)RSTRUCT_CONST_PTR(self), num_members); arg.self = self; arg.unknown_keywords = Qnil; rb_hash_foreach(argv[0], struct_hash_set_i, (VALUE)&arg); // Freeze early before potentially raising, so that we don't leave an // unfrozen copy on the heap, which could get exposed via ObjectSpace. OBJ_FREEZE_RAW(self); if (arg.unknown_keywords != Qnil) { rb_exc_raise(rb_keyword_error_new("unknown", arg.unknown_keywords)); } return Qnil; } /* :nodoc: */ static VALUE rb_data_init_copy(VALUE copy, VALUE s) { copy = rb_struct_init_copy(copy, s); RB_OBJ_FREEZE_RAW(copy); return copy; } /* * call-seq: * with(**kwargs) -> instance * * Returns a shallow copy of +self+ --- the instance variables of * +self+ are copied, but not the objects they reference. * * If the method is supplied any keyword arguments, the copy will * be created with the respective field values updated to use the * supplied keyword argument values. Note that it is an error to * supply a keyword that the Data class does not have as a member. * * Point = Data.define(:x, :y) * * origin = Point.new(x: 0, y: 0) * * up = origin.with(x: 1) * right = origin.with(y: 1) * up_and_right = up.with(y: 1) * * p origin # # * p up # # * p right # # * p up_and_right # # * * out = origin.with(z: 1) # ArgumentError: unknown keyword: :z * some_point = origin.with(1, 2) # ArgumentError: expected keyword arguments, got positional arguments * */ static VALUE rb_data_with(int argc, const VALUE *argv, VALUE self) { VALUE kwargs; rb_scan_args(argc, argv, "0:", &kwargs); if (NIL_P(kwargs)) { return self; } VALUE h = rb_struct_to_h(self); rb_hash_update_by(h, kwargs, 0); return rb_class_new_instance_kw(1, &h, rb_obj_class(self), TRUE); } /* * call-seq: * inspect -> string * to_s -> string * * Returns a string representation of +self+: * * Measure = Data.define(:amount, :unit) * * distance = Measure[10, 'km'] * * p distance # uses #inspect underneath * # * * puts distance # uses #to_s underneath, same representation * # * */ static VALUE rb_data_inspect(VALUE s) { return rb_exec_recursive(inspect_struct, s, rb_str_new2("# true or false * * Returns +true+ if +other+ is the same class as +self+, and all members are * equal. * * Examples: * * Measure = Data.define(:amount, :unit) * * Measure[1, 'km'] == Measure[1, 'km'] #=> true * Measure[1, 'km'] == Measure[2, 'km'] #=> false * Measure[1, 'km'] == Measure[1, 'm'] #=> false * * Measurement = Data.define(:amount, :unit) * # Even though Measurement and Measure have the same "shape" * # their instances are never equal * Measure[1, 'km'] == Measurement[1, 'km'] #=> false */ #define rb_data_equal rb_struct_equal /* * call-seq: * self.eql?(other) -> true or false * * Equality check that is used when two items of data are keys of a Hash. * * The subtle difference with #== is that members are also compared with their * #eql? method, which might be important in some cases: * * Measure = Data.define(:amount, :unit) * * Measure[1, 'km'] == Measure[1.0, 'km'] #=> true, they are equal as values * # ...but... * Measure[1, 'km'].eql? Measure[1.0, 'km'] #=> false, they represent different hash keys * * See also Object#eql? for further explanations of the method usage. */ #define rb_data_eql rb_struct_eql /* * call-seq: * hash -> integer * * Redefines Object#hash (used to distinguish objects as Hash keys) so that * data objects of the same class with same content would have the same +hash+ * value, and represented the same Hash key. * * Measure = Data.define(:amount, :unit) * * Measure[1, 'km'].hash == Measure[1, 'km'].hash #=> true * Measure[1, 'km'].hash == Measure[10, 'km'].hash #=> false * Measure[1, 'km'].hash == Measure[1, 'm'].hash #=> false * Measure[1, 'km'].hash == Measure[1.0, 'km'].hash #=> false * * # Structurally similar data class, but shouldn't be considered * # the same hash key * Measurement = Data.define(:amount, :unit) * * Measure[1, 'km'].hash == Measurement[1, 'km'].hash #=> false */ #define rb_data_hash rb_struct_hash /* * call-seq: * to_h -> hash * to_h {|name, value| ... } -> hash * * Returns Hash representation of the data object. * * Measure = Data.define(:amount, :unit) * distance = Measure[10, 'km'] * * distance.to_h * #=> {:amount=>10, :unit=>"km"} * * Like Enumerable#to_h, if the block is provided, it is expected to * produce key-value pairs to construct a hash: * * * distance.to_h { |name, val| [name.to_s, val.to_s] } * #=> {"amount"=>"10", "unit"=>"km"} * * Note that there is a useful symmetry between #to_h and #initialize: * * distance2 = Measure.new(**distance.to_h) * #=> # * distance2 == distance * #=> true */ #define rb_data_to_h rb_struct_to_h /* * call-seq: * members -> array_of_symbols * * Returns the member names from +self+ as an array: * * Measure = Data.define(:amount, :unit) * distance = Measure[10, 'km'] * * distance.members #=> [:amount, :unit] * */ #define rb_data_members_m rb_struct_members_m /* * call-seq: * deconstruct -> array * * Returns the values in +self+ as an array, to use in pattern matching: * * Measure = Data.define(:amount, :unit) * * distance = Measure[10, 'km'] * distance.deconstruct #=> [10, "km"] * * # usage * case distance * in n, 'km' # calls #deconstruct underneath * puts "It is #{n} kilometers away" * else * puts "Don't know how to handle it" * end * # prints "It is 10 kilometers away" * * Or, with checking the class, too: * * case distance * in Measure(n, 'km') * puts "It is #{n} kilometers away" * # ... * end */ #define rb_data_deconstruct rb_struct_to_a /* * call-seq: * deconstruct_keys(array_of_names_or_nil) -> hash * * Returns a hash of the name/value pairs, to use in pattern matching. * * Measure = Data.define(:amount, :unit) * * distance = Measure[10, 'km'] * distance.deconstruct_keys(nil) #=> {:amount=>10, :unit=>"km"} * distance.deconstruct_keys([:amount]) #=> {:amount=>10} * * # usage * case distance * in amount:, unit: 'km' # calls #deconstruct_keys underneath * puts "It is #{amount} kilometers away" * else * puts "Don't know how to handle it" * end * # prints "It is 10 kilometers away" * * Or, with checking the class, too: * * case distance * in Measure(amount:, unit: 'km') * puts "It is #{amount} kilometers away" * # ... * end */ #define rb_data_deconstruct_keys rb_struct_deconstruct_keys /* * Document-class: Struct * * \Class \Struct provides a convenient way to create a simple class * that can store and fetch values. * * This example creates a subclass of +Struct+, Struct::Customer; * the first argument, a string, is the name of the subclass; * the other arguments, symbols, determine the _members_ of the new subclass. * * Customer = Struct.new('Customer', :name, :address, :zip) * Customer.name # => "Struct::Customer" * Customer.class # => Class * Customer.superclass # => Struct * * Corresponding to each member are two methods, a writer and a reader, * that store and fetch values: * * methods = Customer.instance_methods false * methods # => [:zip, :address=, :zip=, :address, :name, :name=] * * An instance of the subclass may be created, * and its members assigned values, via method ::new: * * joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) * joe # => # * * The member values may be managed thus: * * joe.name # => "Joe Smith" * joe.name = 'Joseph Smith' * joe.name # => "Joseph Smith" * * And thus; note that member name may be expressed as either a string or a symbol: * * joe[:name] # => "Joseph Smith" * joe[:name] = 'Joseph Smith, Jr.' * joe['name'] # => "Joseph Smith, Jr." * * See Struct::new. * * == What's Here * * First, what's elsewhere. \Class \Struct: * * - Inherits from {class Object}[rdoc-ref:Object@What-27s+Here]. * - Includes {module Enumerable}[rdoc-ref:Enumerable@What-27s+Here], * which provides dozens of additional methods. * * See also Data, which is a somewhat similar, but stricter concept for defining immutable * value objects. * * Here, class \Struct provides methods that are useful for: * * - {Creating a Struct Subclass}[rdoc-ref:Struct@Methods+for+Creating+a+Struct+Subclass] * - {Querying}[rdoc-ref:Struct@Methods+for+Querying] * - {Comparing}[rdoc-ref:Struct@Methods+for+Comparing] * - {Fetching}[rdoc-ref:Struct@Methods+for+Fetching] * - {Assigning}[rdoc-ref:Struct@Methods+for+Assigning] * - {Iterating}[rdoc-ref:Struct@Methods+for+Iterating] * - {Converting}[rdoc-ref:Struct@Methods+for+Converting] * * === Methods for Creating a Struct Subclass * * - ::new: Returns a new subclass of \Struct. * * === Methods for Querying * * - #hash: Returns the integer hash code. * - #length, #size: Returns the number of members. * * === Methods for Comparing * * - #==: Returns whether a given object is equal to +self+, using == * to compare member values. * - #eql?: Returns whether a given object is equal to +self+, * using eql? to compare member values. * * === Methods for Fetching * * - #[]: Returns the value associated with a given member name. * - #to_a, #values, #deconstruct: Returns the member values in +self+ as an array. * - #deconstruct_keys: Returns a hash of the name/value pairs * for given member names. * - #dig: Returns the object in nested objects that is specified * by a given member name and additional arguments. * - #members: Returns an array of the member names. * - #select, #filter: Returns an array of member values from +self+, * as selected by the given block. * - #values_at: Returns an array containing values for given member names. * * === Methods for Assigning * * - #[]=: Assigns a given value to a given member name. * * === Methods for Iterating * * - #each: Calls a given block with each member name. * - #each_pair: Calls a given block with each member name/value pair. * * === Methods for Converting * * - #inspect, #to_s: Returns a string representation of +self+. * - #to_h: Returns a hash of the member name/value pairs in +self+. * */ void InitVM_Struct(void) { rb_cStruct = rb_define_class("Struct", rb_cObject); rb_include_module(rb_cStruct, rb_mEnumerable); rb_undef_alloc_func(rb_cStruct); rb_define_singleton_method(rb_cStruct, "new", rb_struct_s_def, -1); #if 0 /* for RDoc */ rb_define_singleton_method(rb_cStruct, "keyword_init?", rb_struct_s_keyword_init_p, 0); rb_define_singleton_method(rb_cStruct, "members", rb_struct_s_members_m, 0); #endif rb_define_method(rb_cStruct, "initialize", rb_struct_initialize_m, -1); rb_define_method(rb_cStruct, "initialize_copy", rb_struct_init_copy, 1); rb_define_method(rb_cStruct, "==", rb_struct_equal, 1); rb_define_method(rb_cStruct, "eql?", rb_struct_eql, 1); rb_define_method(rb_cStruct, "hash", rb_struct_hash, 0); rb_define_method(rb_cStruct, "inspect", rb_struct_inspect, 0); rb_define_alias(rb_cStruct, "to_s", "inspect"); rb_define_method(rb_cStruct, "to_a", rb_struct_to_a, 0); rb_define_method(rb_cStruct, "to_h", rb_struct_to_h, 0); rb_define_method(rb_cStruct, "values", rb_struct_to_a, 0); rb_define_method(rb_cStruct, "size", rb_struct_size, 0); rb_define_method(rb_cStruct, "length", rb_struct_size, 0); rb_define_method(rb_cStruct, "each", rb_struct_each, 0); rb_define_method(rb_cStruct, "each_pair", rb_struct_each_pair, 0); rb_define_method(rb_cStruct, "[]", rb_struct_aref, 1); rb_define_method(rb_cStruct, "[]=", rb_struct_aset, 2); rb_define_method(rb_cStruct, "select", rb_struct_select, -1); rb_define_method(rb_cStruct, "filter", rb_struct_select, -1); rb_define_method(rb_cStruct, "values_at", rb_struct_values_at, -1); rb_define_method(rb_cStruct, "members", rb_struct_members_m, 0); rb_define_method(rb_cStruct, "dig", rb_struct_dig, -1); rb_define_method(rb_cStruct, "deconstruct", rb_struct_to_a, 0); rb_define_method(rb_cStruct, "deconstruct_keys", rb_struct_deconstruct_keys, 1); rb_cData = rb_define_class("Data", rb_cObject); rb_undef_method(CLASS_OF(rb_cData), "new"); rb_undef_alloc_func(rb_cData); rb_define_singleton_method(rb_cData, "define", rb_data_s_def, -1); #if 0 /* for RDoc */ rb_define_singleton_method(rb_cData, "members", rb_data_s_members_m, 0); #endif rb_define_method(rb_cData, "initialize", rb_data_initialize_m, -1); rb_define_method(rb_cData, "initialize_copy", rb_data_init_copy, 1); rb_define_method(rb_cData, "==", rb_data_equal, 1); rb_define_method(rb_cData, "eql?", rb_data_eql, 1); rb_define_method(rb_cData, "hash", rb_data_hash, 0); rb_define_method(rb_cData, "inspect", rb_data_inspect, 0); rb_define_alias(rb_cData, "to_s", "inspect"); rb_define_method(rb_cData, "to_h", rb_data_to_h, 0); rb_define_method(rb_cData, "members", rb_data_members_m, 0); rb_define_method(rb_cData, "deconstruct", rb_data_deconstruct, 0); rb_define_method(rb_cData, "deconstruct_keys", rb_data_deconstruct_keys, 1); rb_define_method(rb_cData, "with", rb_data_with, -1); } #undef rb_intern void Init_Struct(void) { id_members = rb_intern("__members__"); id_back_members = rb_intern("__members_back__"); id_keyword_init = rb_intern("__keyword_init__"); InitVM(Struct); }