aboutsummaryrefslogtreecommitdiffstats
path: root/test/openssl/test_pkey_ec.rb
blob: fe128fd4556bafaadbb43110e3df8f47615200bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# frozen_string_literal: false
require_relative 'utils'

if defined?(OpenSSL::TestUtils) && defined?(OpenSSL::PKey::EC)

class OpenSSL::TestEC < Test::Unit::TestCase
  def setup
    @data1 = 'foo'
    @data2 = 'bar' * 1000 # data too long for DSA sig

    @groups = []
    @keys = []

    OpenSSL::PKey::EC.builtin_curves.each do |curve, comment|
      next if curve.start_with?("Oakley") # Oakley curves are not suitable for ECDSA
      group = OpenSSL::PKey::EC::Group.new(curve)

      key = OpenSSL::PKey::EC.new(group)
      key.generate_key

      @groups << group
      @keys << key
    end
  end

  def compare_keys(k1, k2)
    assert_equal(k1.to_pem, k2.to_pem)
  end

  def test_builtin_curves
    assert(!OpenSSL::PKey::EC.builtin_curves.empty?)
  end

  def test_curve_names
    @groups.each_with_index do |group, idx|
      key = @keys[idx]
      assert_equal(group.curve_name, key.group.curve_name)
    end
  end

  def test_check_key
    for key in @keys
      assert_equal(key.check_key, true)
      assert_equal(key.private_key?, true)
      assert_equal(key.public_key?, true)
    end
  end

  def test_group_encoding
    for group in @groups
      for meth in [:to_der, :to_pem]
        txt = group.send(meth)
        gr = OpenSSL::PKey::EC::Group.new(txt)

        assert_equal(txt, gr.send(meth))

        assert_equal(group.generator.to_bn, gr.generator.to_bn)
        assert_equal(group.cofactor, gr.cofactor)
        assert_equal(group.order, gr.order)
        assert_equal(group.seed, gr.seed)
        assert_equal(group.degree, gr.degree)
      end
    end
  end

  def test_key_encoding
    for key in @keys
      group = key.group

      for meth in [:to_der, :to_pem]
        txt = key.send(meth)
        assert_equal(txt, OpenSSL::PKey::EC.new(txt).send(meth))
      end

      bn = key.public_key.to_bn
      assert_equal(bn, OpenSSL::PKey::EC::Point.new(group, bn).to_bn)
    end
  end

  def test_set_keys
    for key in @keys
      k = OpenSSL::PKey::EC.new
      k.group = key.group
      k.private_key = key.private_key
      k.public_key = key.public_key

      compare_keys(key, k)
    end
  end

  def test_dsa_sign_verify
    for key in @keys
      sig = key.dsa_sign_asn1(@data1)
      assert(key.dsa_verify_asn1(@data1, sig))
    end
  end

  def test_dsa_sign_asn1_FIPS186_3
    for key in @keys
      size = key.group.order.num_bits / 8 + 1
      dgst = (1..size).to_a.pack('C*')
      begin
        sig = key.dsa_sign_asn1(dgst)
        # dgst is auto-truncated according to FIPS186-3 after openssl-0.9.8m
        assert(key.dsa_verify_asn1(dgst + "garbage", sig))
      rescue OpenSSL::PKey::ECError => e
        # just an exception for longer dgst before openssl-0.9.8m
        assert_equal('ECDSA_sign: data too large for key size', e.message)
        # no need to do following tests
        return
      end
    end
  end

  def test_dh_compute_key
    for key in @keys
      k = OpenSSL::PKey::EC.new(key.group)
      k.generate_key

      puba = key.public_key
      pubb = k.public_key
      a = key.dh_compute_key(pubb)
      b = k.dh_compute_key(puba)
      assert_equal(a, b)
    end
  end

  def test_read_private_key_der
    ec = OpenSSL::TestUtils::TEST_KEY_EC_P256V1
    der = ec.to_der
    ec2 = OpenSSL::PKey.read(der)
    assert(ec2.private_key?)
    assert_equal(der, ec2.to_der)
    assert_equal([], OpenSSL.errors)
  end

  def test_read_private_key_pem
    ec = OpenSSL::TestUtils::TEST_KEY_EC_P256V1
    pem = ec.to_pem
    ec2 = OpenSSL::PKey.read(pem)
    assert(ec2.private_key?)
    assert_equal(pem, ec2.to_pem)
    assert_equal([], OpenSSL.errors)
  end

  def test_read_public_key_der
    ec = OpenSSL::TestUtils::TEST_KEY_EC_P256V1
    ec2 = OpenSSL::PKey::EC.new(ec.group)
    ec2.public_key = ec.public_key
    der = ec2.to_der
    ec3 = OpenSSL::PKey.read(der)
    assert(!ec3.private_key?)
    assert_equal(der, ec3.to_der)
    assert_equal([], OpenSSL.errors)
  end

  def test_read_public_key_pem
    ec = OpenSSL::TestUtils::TEST_KEY_EC_P256V1
    ec2 = OpenSSL::PKey::EC.new(ec.group)
    ec2.public_key = ec.public_key
    pem = ec2.to_pem
    ec3 = OpenSSL::PKey.read(pem)
    assert(!ec3.private_key?)
    assert_equal(pem, ec3.to_pem)
    assert_equal([], OpenSSL.errors)
  end

  def test_read_private_key_pem_pw
    ec = OpenSSL::TestUtils::TEST_KEY_EC_P256V1
    pem = ec.to_pem(OpenSSL::Cipher.new('AES-128-CBC'), 'secret')
    #callback form for password
    ec2 = OpenSSL::PKey.read(pem) do
      'secret'
    end
    assert(ec2.private_key?)
    # pass password directly
    ec2 = OpenSSL::PKey.read(pem, 'secret')
    assert(ec2.private_key?)
    #omit pem equality check, will be different due to cipher iv
    assert_equal([], OpenSSL.errors)
  end

  def test_export_password_length
    key = OpenSSL::TestUtils::TEST_KEY_EC_P256V1
    assert_raise(OpenSSL::OpenSSLError) do
      key.export(OpenSSL::Cipher.new('AES-128-CBC'), 'sec')
    end
    pem = key.export(OpenSSL::Cipher.new('AES-128-CBC'), 'secr')
    assert(pem)
  end

  def test_ec_point_mul
    ec = OpenSSL::TestUtils::TEST_KEY_EC_P256V1
    p1 = ec.public_key
    bn1 = OpenSSL::BN.new('10')
    bn2 = OpenSSL::BN.new('20')

    p2 = p1.mul(bn1)
    assert(p1.group == p2.group)
    p2 = p1.mul(bn1, bn2)
    assert(p1.group == p2.group)
    p2 = p1.mul([bn1, bn2], [p1])
    assert(p1.group == p2.group)
    p2 = p1.mul([bn1, bn2], [p1], bn2)
    assert(p1.group == p2.group)
  end

# test Group: asn1_flag, point_conversion

end

end