aboutsummaryrefslogtreecommitdiffstats
path: root/yjit_codegen.c
diff options
context:
space:
mode:
Diffstat (limited to 'yjit_codegen.c')
-rw-r--r--yjit_codegen.c1783
1 files changed, 1783 insertions, 0 deletions
diff --git a/yjit_codegen.c b/yjit_codegen.c
new file mode 100644
index 0000000000..ab16ccbf42
--- /dev/null
+++ b/yjit_codegen.c
@@ -0,0 +1,1783 @@
+#include <assert.h>
+#include "insns.inc"
+#include "internal.h"
+#include "vm_core.h"
+#include "vm_sync.h"
+#include "vm_callinfo.h"
+#include "builtin.h"
+#include "internal/compile.h"
+#include "internal/class.h"
+#include "insns_info.inc"
+#include "yjit.h"
+#include "yjit_iface.h"
+#include "yjit_core.h"
+#include "yjit_codegen.h"
+#include "yjit_asm.h"
+#include "yjit_utils.h"
+
+// Map from YARV opcodes to code generation functions
+static st_table *gen_fns;
+
+// Code block into which we write machine code
+static codeblock_t block;
+codeblock_t* cb = NULL;
+
+// Code block into which we write out-of-line machine code
+static codeblock_t outline_block;
+codeblock_t* ocb = NULL;
+
+// Print the current source location for debugging purposes
+RBIMPL_ATTR_MAYBE_UNUSED()
+static void
+jit_print_loc(jitstate_t* jit, const char* msg)
+{
+ char *ptr;
+ long len;
+ VALUE path = rb_iseq_path(jit->iseq);
+ RSTRING_GETMEM(path, ptr, len);
+ fprintf(stderr, "%s %s:%u\n", msg, ptr, rb_iseq_line_no(jit->iseq, jit->insn_idx));
+}
+
+// Get the current instruction's opcode
+static int
+jit_get_opcode(jitstate_t* jit)
+{
+ return opcode_at_pc(jit->iseq, jit->pc);
+}
+
+// Get the index of the next instruction
+static uint32_t
+jit_next_idx(jitstate_t* jit)
+{
+ return jit->insn_idx + insn_len(jit_get_opcode(jit));
+}
+
+// Get an instruction argument by index
+static VALUE
+jit_get_arg(jitstate_t* jit, size_t arg_idx)
+{
+ RUBY_ASSERT(arg_idx + 1 < (size_t)insn_len(jit_get_opcode(jit)));
+ return *(jit->pc + arg_idx + 1);
+}
+
+// Load a VALUE into a register and keep track of the reference if it is on the GC heap.
+static void
+jit_mov_gc_ptr(jitstate_t* jit, codeblock_t* cb, x86opnd_t reg, VALUE ptr)
+{
+ RUBY_ASSERT(reg.type == OPND_REG && reg.num_bits == 64);
+
+ // Load the pointer constant into the specified register
+ mov(cb, reg, const_ptr_opnd((void*)ptr));
+
+ // The pointer immediate is encoded as the last part of the mov written out
+ uint32_t ptr_offset = cb->write_pos - sizeof(VALUE);
+
+ if (!SPECIAL_CONST_P(ptr)) {
+ if (!rb_darray_append(&jit->block->gc_object_offsets, ptr_offset)) {
+ rb_bug("allocation failed");
+ }
+ }
+}
+
+// Check if we are compiling the instruction at the stub PC
+// Meaning we are compiling the instruction that is next to execute
+static bool
+jit_at_current_insn(jitstate_t* jit)
+{
+ const VALUE* ec_pc = jit->ec->cfp->pc;
+ return (ec_pc == jit->pc);
+}
+
+// Peek at the topmost value on the Ruby stack
+static VALUE
+jit_peek_at_stack(jitstate_t* jit, ctx_t* ctx)
+{
+ RUBY_ASSERT(jit_at_current_insn(jit));
+
+ VALUE* sp = jit->ec->cfp->sp + ctx->sp_offset;
+
+ return *(sp - 1);
+}
+
+// Save YJIT registers prior to a C call
+static void
+yjit_save_regs(codeblock_t* cb)
+{
+ push(cb, REG_CFP);
+ push(cb, REG_EC);
+ push(cb, REG_SP);
+ push(cb, REG_SP); // Maintain 16-byte RSP alignment
+}
+
+// Restore YJIT registers after a C call
+static void
+yjit_load_regs(codeblock_t* cb)
+{
+ pop(cb, REG_SP); // Maintain 16-byte RSP alignment
+ pop(cb, REG_SP);
+ pop(cb, REG_EC);
+ pop(cb, REG_CFP);
+}
+
+/**
+Generate an inline exit to return to the interpreter
+*/
+static void
+yjit_gen_exit(jitstate_t* jit, ctx_t* ctx, codeblock_t* cb, VALUE* exit_pc)
+{
+ // Write the adjusted SP back into the CFP
+ if (ctx->sp_offset != 0)
+ {
+ x86opnd_t stack_pointer = ctx_sp_opnd(ctx, 0);
+ lea(cb, REG_SP, stack_pointer);
+ mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG_SP);
+ }
+
+ // Update the CFP on the EC
+ mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP);
+
+ // Directly return the next PC, which is a constant
+ mov(cb, RAX, const_ptr_opnd(exit_pc));
+ mov(cb, member_opnd(REG_CFP, rb_control_frame_t, pc), RAX);
+
+ // Accumulate stats about interpreter exits
+#if RUBY_DEBUG
+ if (rb_yjit_opts.gen_stats) {
+ mov(cb, RDI, const_ptr_opnd(exit_pc));
+ call_ptr(cb, RSI, (void *)&rb_yjit_count_side_exit_op);
+ }
+#endif
+
+ // Write the post call bytes
+ cb_write_post_call_bytes(cb);
+}
+
+/**
+Generate an out-of-line exit to return to the interpreter
+*/
+static uint8_t *
+yjit_side_exit(jitstate_t* jit, ctx_t* ctx)
+{
+ uint8_t* code_ptr = cb_get_ptr(ocb, ocb->write_pos);
+
+ // Table mapping opcodes to interpreter handlers
+ const void * const *handler_table = rb_vm_get_insns_address_table();
+
+ // FIXME: rewriting the old instruction is only necessary if we're
+ // exiting right at an interpreter entry point
+
+ // Write back the old instruction at the exit PC
+ // Otherwise the interpreter may jump right back to the
+ // JITted code we're trying to exit
+ VALUE* exit_pc = iseq_pc_at_idx(jit->iseq, jit->insn_idx);
+ int exit_opcode = opcode_at_pc(jit->iseq, exit_pc);
+ void* handler_addr = (void*)handler_table[exit_opcode];
+ mov(ocb, RAX, const_ptr_opnd(exit_pc));
+ mov(ocb, RCX, const_ptr_opnd(handler_addr));
+ mov(ocb, mem_opnd(64, RAX, 0), RCX);
+
+ // Generate the code to exit to the interpreters
+ yjit_gen_exit(jit, ctx, ocb, exit_pc);
+
+ return code_ptr;
+}
+
+#if RUBY_DEBUG
+
+// Increment a profiling counter with counter_name
+#define GEN_COUNTER_INC(cb, counter_name) _gen_counter_inc(cb, &(yjit_runtime_counters . counter_name))
+static void
+_gen_counter_inc(codeblock_t *cb, int64_t *counter)
+{
+ if (!rb_yjit_opts.gen_stats) return;
+ mov(cb, REG0, const_ptr_opnd(counter));
+ cb_write_lock_prefix(cb); // for ractors.
+ add(cb, mem_opnd(64, REG0, 0), imm_opnd(1));
+}
+
+// Increment a counter then take an existing side exit.
+#define COUNTED_EXIT(side_exit, counter_name) _counted_side_exit(side_exit, &(yjit_runtime_counters . counter_name))
+static uint8_t *
+_counted_side_exit(uint8_t *existing_side_exit, int64_t *counter)
+{
+ if (!rb_yjit_opts.gen_stats) return existing_side_exit;
+
+ uint8_t *start = cb_get_ptr(ocb, ocb->write_pos);
+ _gen_counter_inc(ocb, counter);
+ jmp_ptr(ocb, existing_side_exit);
+ return start;
+}
+
+#else
+#define GEN_COUNTER_INC(cb, counter_name) ((void)0)
+#define COUNTED_EXIT(side_exit, counter_name) side_exit
+#endif // if RUBY_DEBUG
+
+/*
+Compile an interpreter entry block to be inserted into an iseq
+Returns `NULL` if compilation fails.
+*/
+uint8_t*
+yjit_entry_prologue(void)
+{
+ RUBY_ASSERT(cb != NULL);
+
+ if (cb->write_pos + 1024 >= cb->mem_size) {
+ rb_bug("out of executable memory");
+ }
+
+ // Align the current write positon to cache line boundaries
+ cb_align_pos(cb, 64);
+
+ uint8_t *code_ptr = cb_get_ptr(cb, cb->write_pos);
+
+ // Write the interpreter entry prologue
+ cb_write_pre_call_bytes(cb);
+
+ // Load the current SP from the CFP into REG_SP
+ mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp));
+
+ return code_ptr;
+}
+
+/*
+Generate code to check for interrupts and take a side-exit
+*/
+static void
+yjit_check_ints(codeblock_t* cb, uint8_t* side_exit)
+{
+ // Check for interrupts
+ // see RUBY_VM_CHECK_INTS(ec) macro
+ mov(cb, REG0_32, member_opnd(REG_EC, rb_execution_context_t, interrupt_mask));
+ not(cb, REG0_32);
+ test(cb, member_opnd(REG_EC, rb_execution_context_t, interrupt_flag), REG0_32);
+ jnz_ptr(cb, side_exit);
+}
+
+/*
+Compile a sequence of bytecode instructions for a given basic block version
+*/
+void
+yjit_gen_block(ctx_t* ctx, block_t* block, rb_execution_context_t* ec)
+{
+ RUBY_ASSERT(cb != NULL);
+ RUBY_ASSERT(block != NULL);
+
+ const rb_iseq_t *iseq = block->blockid.iseq;
+ uint32_t insn_idx = block->blockid.idx;
+
+ // NOTE: if we are ever deployed in production, we
+ // should probably just log an error and return NULL here,
+ // so we can fail more gracefully
+ if (cb->write_pos + 1024 >= cb->mem_size) {
+ rb_bug("out of executable memory");
+ }
+ if (ocb->write_pos + 1024 >= ocb->mem_size) {
+ rb_bug("out of executable memory (outlined block)");
+ }
+
+ // Initialize a JIT state object
+ jitstate_t jit = {
+ block,
+ iseq,
+ 0,
+ 0,
+ ec
+ };
+
+ // Mark the start position of the block
+ block->start_pos = cb->write_pos;
+
+ // For each instruction to compile
+ for (;;) {
+ // Set the current instruction
+ jit.insn_idx = insn_idx;
+ jit.pc = iseq_pc_at_idx(iseq, insn_idx);
+
+ // Get the current opcode
+ int opcode = jit_get_opcode(&jit);
+
+ // Lookup the codegen function for this instruction
+ codegen_fn gen_fn;
+ if (!rb_st_lookup(gen_fns, opcode, (st_data_t*)&gen_fn)) {
+ // If we reach an unknown instruction,
+ // exit to the interpreter and stop compiling
+ yjit_gen_exit(&jit, ctx, cb, jit.pc);
+ break;
+ }
+
+ //fprintf(stderr, "compiling %d: %s\n", insn_idx, insn_name(opcode));
+ //print_str(cb, insn_name(opcode));
+
+ // Count bytecode instructions that execute in generated code
+ // FIXME: when generation function returns false, we shouldn't increment
+ // this counter.
+ GEN_COUNTER_INC(cb, exec_instruction);
+
+ // Call the code generation function
+ bool continue_generating = p_desc->gen_fn(&jit, ctx);
+
+ // For now, reset the chain depth after each instruction
+ ctx->chain_depth = 0;
+
+ // If we can't compile this instruction
+ // exit to the interpreter and stop compiling
+ if (status == YJIT_CANT_COMPILE) {
+ yjit_gen_exit(&jit, ctx, cb, jit.pc);
+ break;
+ }
+
+ // Move to the next instruction
+ p_last_op = p_desc;
+ insn_idx += insn_len(opcode);
+
+ // If the instruction terminates this block
+ if (status == YJIT_END_BLOCK) {
+ break;
+ }
+ }
+
+ // Mark the end position of the block
+ block->end_pos = cb->write_pos;
+
+ // Store the index of the last instruction in the block
+ block->end_idx = insn_idx;
+
+ if (YJIT_DUMP_MODE >= 2) {
+ // Dump list of compiled instrutions
+ fprintf(stderr, "Compiled the following for iseq=%p:\n", (void *)iseq);
+ for (uint32_t idx = block->blockid.idx; idx < insn_idx;)
+ {
+ int opcode = opcode_at_pc(iseq, iseq_pc_at_idx(iseq, idx));
+ fprintf(stderr, " %04d %s\n", idx, insn_name(opcode));
+ idx += insn_len(opcode);
+ }
+ }
+}
+
+static codegen_status_t
+gen_dup(jitstate_t* jit, ctx_t* ctx)
+{
+ // Get the top value and its type
+ x86opnd_t dup_val = ctx_stack_pop(ctx, 0);
+ int dup_type = ctx_get_top_type(ctx);
+
+ // Push the same value on top
+ x86opnd_t loc0 = ctx_stack_push(ctx, dup_type);
+ mov(cb, REG0, dup_val);
+ mov(cb, loc0, REG0);
+
+ return YJIT_KEEP_COMPILING;
+}
+
+static codegen_status_t
+gen_nop(jitstate_t* jit, ctx_t* ctx)
+{
+ // Do nothing
+ return YJIT_KEEP_COMPILING;
+}
+
+static codegen_status_t
+gen_pop(jitstate_t* jit, ctx_t* ctx)
+{
+ // Decrement SP
+ ctx_stack_pop(ctx, 1);
+ return YJIT_KEEP_COMPILING;
+}
+
+static codegen_status_t
+gen_putnil(jitstate_t* jit, ctx_t* ctx)
+{
+ // Write constant at SP
+ x86opnd_t stack_top = ctx_stack_push(ctx, T_NIL);
+ mov(cb, stack_top, imm_opnd(Qnil));
+ return YJIT_KEEP_COMPILING;
+}
+
+static codegen_status_t
+gen_putobject(jitstate_t* jit, ctx_t* ctx)
+{
+ VALUE arg = jit_get_arg(jit, 0);
+
+ if (FIXNUM_P(arg))
+ {
+ // Keep track of the fixnum type tag
+ x86opnd_t stack_top = ctx_stack_push(ctx, T_FIXNUM);
+
+ x86opnd_t imm = imm_opnd((int64_t)arg);
+
+ // 64-bit immediates can't be directly written to memory
+ if (imm.num_bits <= 32)
+ {
+ mov(cb, stack_top, imm);
+ }
+ else
+ {
+ mov(cb, REG0, imm);
+ mov(cb, stack_top, REG0);
+ }
+ }
+ else if (arg == Qtrue || arg == Qfalse)
+ {
+ x86opnd_t stack_top = ctx_stack_push(ctx, T_NONE);
+ mov(cb, stack_top, imm_opnd((int64_t)arg));
+ }
+ else
+ {
+ // Load the argument from the bytecode sequence.
+ // We need to do this as the argument can change due to GC compaction.
+ x86opnd_t pc_plus_one = const_ptr_opnd((void*)(jit->pc + 1));
+ mov(cb, RAX, pc_plus_one);
+ mov(cb, RAX, mem_opnd(64, RAX, 0));
+
+ // Write argument at SP
+ x86opnd_t stack_top = ctx_stack_push(ctx, T_NONE);
+ mov(cb, stack_top, RAX);
+ }
+
+ return YJIT_KEEP_COMPILING;
+}
+
+static codegen_status_t
+gen_putobject_int2fix(jitstate_t* jit, ctx_t* ctx)
+{
+ int opcode = jit_get_opcode(jit);
+ int cst_val = (opcode == BIN(putobject_INT2FIX_0_))? 0:1;
+
+ // Write constant at SP
+ x86opnd_t stack_top = ctx_stack_push(ctx, T_FIXNUM);
+ mov(cb, stack_top, imm_opnd(INT2FIX(cst_val)));
+
+ return YJIT_KEEP_COMPILING;
+}
+
+static codegen_status_t
+gen_putself(jitstate_t* jit, ctx_t* ctx)
+{
+ // Load self from CFP
+ mov(cb, RAX, member_opnd(REG_CFP, rb_control_frame_t, self));
+
+ // Write it on the stack
+ x86opnd_t stack_top = ctx_stack_push(ctx, T_NONE);
+ mov(cb, stack_top, RAX);
+
+ return YJIT_KEEP_COMPILING;
+}
+
+static codegen_status_t
+gen_getlocal_wc0(jitstate_t* jit, ctx_t* ctx)
+{
+ // Load environment pointer EP from CFP
+ mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));
+
+ // Compute the offset from BP to the local
+ int32_t local_idx = (int32_t)jit_get_arg(jit, 0);
+ const int32_t offs = -(SIZEOF_VALUE * local_idx);
+
+ // Load the local from the block
+ mov(cb, REG0, mem_opnd(64, REG0, offs));
+
+ // Write the local at SP
+ x86opnd_t stack_top = ctx_stack_push(ctx, T_NONE);
+ mov(cb, stack_top, REG0);
+
+ return YJIT_KEEP_COMPILING;
+}
+
+static codegen_status_t
+gen_getlocal_wc1(jitstate_t* jit, ctx_t* ctx)
+{
+ //fprintf(stderr, "gen_getlocal_wc1\n");
+
+ // Load environment pointer EP from CFP
+ mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));
+
+ // Get the previous EP from the current EP
+ // See GET_PREV_EP(ep) macro
+ // VALUE* prev_ep = ((VALUE *)((ep)[VM_ENV_DATA_INDEX_SPECVAL] & ~0x03))
+ mov(cb, REG0, mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_SPECVAL));
+ and(cb, REG0, imm_opnd(~0x03));
+
+ // Load the local from the block
+ // val = *(vm_get_ep(GET_EP(), level) - idx);
+ int32_t local_idx = (int32_t)jit_get_arg(jit, 0);
+ const int32_t offs = -(SIZEOF_VALUE * local_idx);
+ mov(cb, REG0, mem_opnd(64, REG0, offs));
+
+ // Write the local at SP
+ x86opnd_t stack_top = ctx_stack_push(ctx, T_NONE);
+ mov(cb, stack_top, REG0);
+
+ return YJIT_KEEP_COMPILING;
+}
+
+static codegen_status_t
+gen_setlocal_wc0(jitstate_t* jit, ctx_t* ctx)
+{
+ /*
+ vm_env_write(const VALUE *ep, int index, VALUE v)
+ {
+ VALUE flags = ep[VM_ENV_DATA_INDEX_FLAGS];
+ if (LIKELY((flags & VM_ENV_FLAG_WB_REQUIRED) == 0)) {
+ VM_STACK_ENV_WRITE(ep, index, v);
+ }
+ else {
+ vm_env_write_slowpath(ep, index, v);
+ }
+ }
+ */
+
+ // Load environment pointer EP from CFP
+ mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));
+
+ // flags & VM_ENV_FLAG_WB_REQUIRED
+ x86opnd_t flags_opnd = mem_opnd(64, REG0, sizeof(VALUE) * VM_ENV_DATA_INDEX_FLAGS);
+ test(cb, flags_opnd, imm_opnd(VM_ENV_FLAG_WB_REQUIRED));
+
+ // Create a size-exit to fall back to the interpreter
+ uint8_t* side_exit = yjit_side_exit(jit, ctx);
+
+ // if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0
+ jnz_ptr(cb, side_exit);
+
+ // Pop the value to write from the stack
+ x86opnd_t stack_top = ctx_stack_pop(ctx, 1);
+ mov(cb, REG1, stack_top);
+
+ // Write the value at the environment pointer
+ int32_t local_idx = (int32_t)jit_get_arg(jit, 0);
+ const int32_t offs = -8 * local_idx;
+ mov(cb, mem_opnd(64, REG0, offs), REG1);
+
+ return YJIT_KEEP_COMPILING;
+}
+
+// Check that `self` is a pointer to an object on the GC heap
+static void
+guard_self_is_object(codeblock_t *cb, x86opnd_t self_opnd, uint8_t *side_exit, ctx_t *ctx)
+{
+ // `self` is constant throughout the entire region, so we only need to do this check once.
+ if (!ctx->self_is_object) {
+ test(cb, self_opnd, imm_opnd(RUBY_IMMEDIATE_MASK));
+ jnz_ptr(cb, side_exit);
+ cmp(cb, self_opnd, imm_opnd(Qfalse));
+ je_ptr(cb, side_exit);
+ cmp(cb, self_opnd, imm_opnd(Qnil));
+ je_ptr(cb, side_exit);
+ ctx->self_is_object = true;
+ }
+}
+
+static codegen_status_t
+gen_getinstancevariable(jitstate_t* jit, ctx_t* ctx)
+{
+ IVC ic = (IVC)jit_get_arg(jit, 1);
+
+ // Check that the inline cache has been set, slot index is known
+ if (!ic->entry) {
+ return YJIT_CANT_COMPILE;
+ }
+
+ // Defer compilation so we can peek at the topmost object
+ if (!jit_at_current_insn(jit))
+ {
+ defer_compilation(jit->block, jit->insn_idx, ctx);
+ return YJIT_END_BLOCK;
+ }
+
+ // Peek at the topmost value on the stack at compilation time
+ VALUE top_val = jit_peek_at_stack(jit, ctx);
+
+ // TODO: play with deferred compilation and sidechains! :)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ // If the class uses the default allocator, instances should all be T_OBJECT
+ // NOTE: This assumes nobody changes the allocator of the class after allocation.
+ // Eventually, we can encode whether an object is T_OBJECT or not
+ // inside object shapes.
+ if (rb_get_alloc_func(ic->entry->class_value) != rb_class_allocate_instance) {
+ return YJIT_CANT_COMPILE;
+ }
+
+ uint32_t ivar_index = ic->entry->index;
+
+ // Create a size-exit to fall back to the interpreter
+ uint8_t* side_exit = yjit_side_exit(jit, ctx);
+
+ // Load self from CFP
+ mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self));
+
+ guard_self_is_object(cb, REG0, side_exit, ctx);
+
+ // Bail if receiver class is different from compiled time call cache class
+ x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass));
+ mov(cb, REG1, klass_opnd);
+ x86opnd_t serial_opnd = mem_opnd(64, REG1, offsetof(struct RClass, class_serial));
+ cmp(cb, serial_opnd, imm_opnd(ic->entry->class_serial));
+ jne_ptr(cb, side_exit);
+
+ // Bail if the ivars are not on the extended table
+ // See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h
+ x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
+ test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED));
+ jnz_ptr(cb, side_exit);
+
+ // check that the extended table is big enough
+ if (ivar_index >= ROBJECT_EMBED_LEN_MAX + 1) {
+ // Check that the slot is inside the extended table (num_slots > index)
+ x86opnd_t num_slots = mem_opnd(32, REG0, offsetof(struct RObject, as.heap.numiv));
+ cmp(cb, num_slots, imm_opnd(ivar_index));
+ jle_ptr(cb, side_exit);
+ }
+
+ // Get a pointer to the extended table
+ x86opnd_t tbl_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.heap.ivptr));
+ mov(cb, REG0, tbl_opnd);
+
+ // Read the ivar from the extended table
+ x86opnd_t ivar_opnd = mem_opnd(64, REG0, sizeof(VALUE) * ivar_index);
+ mov(cb, REG0, ivar_opnd);
+
+ // Check that the ivar is not Qundef
+ cmp(cb, REG0, imm_opnd(Qundef));
+ je_ptr(cb, side_exit);
+
+ // Push the ivar on the stack
+ x86opnd_t out_opnd = ctx_stack_push(ctx, T_NONE);
+ mov(cb, out_opnd, REG0);
+
+ return YJIT_KEEP_COMPILING;
+}
+
+static codegen_status_t
+gen_setinstancevariable(jitstate_t* jit, ctx_t* ctx)
+{
+ IVC ic = (IVC)jit_get_arg(jit, 1);
+
+ // Check that the inline cache has been set, slot index is known
+ if (!ic->entry) {
+ return YJIT_CANT_COMPILE;
+ }
+
+ // If the class uses the default allocator, instances should all be T_OBJECT
+ // NOTE: This assumes nobody changes the allocator of the class after allocation.
+ // Eventually, we can encode whether an object is T_OBJECT or not
+ // inside object shapes.
+ if (rb_get_alloc_func(ic->entry->class_value) != rb_class_allocate_instance) {
+ return YJIT_CANT_COMPILE;
+ }
+
+ uint32_t ivar_index = ic->entry->index;
+
+ // Create a size-exit to fall back to the interpreter
+ uint8_t* side_exit = yjit_side_exit(jit, ctx);
+
+ // Load self from CFP
+ mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self));
+
+ guard_self_is_object(cb, REG0, side_exit, ctx);
+
+ // Bail if receiver class is different from compiled time call cache class
+ x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass));
+ mov(cb, REG1, klass_opnd);
+ x86opnd_t serial_opnd = mem_opnd(64, REG1, offsetof(struct RClass, class_serial));
+ cmp(cb, serial_opnd, imm_opnd(ic->entry->class_serial));
+ jne_ptr(cb, side_exit);
+
+ // Bail if the ivars are not on the extended table
+ // See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h
+ x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags);
+ test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED));
+ jnz_ptr(cb, side_exit);
+
+ // If we can't guarantee that the extended table is big enoughg
+ if (ivar_index >= ROBJECT_EMBED_LEN_MAX + 1) {
+ // Check that the slot is inside the extended table (num_slots > index)
+ x86opnd_t num_slots = mem_opnd(32, REG0, offsetof(struct RObject, as.heap.numiv));
+ cmp(cb, num_slots, imm_opnd(ivar_index));
+ jle_ptr(cb, side_exit);
+ }
+
+ // Get a pointer to the extended table
+ x86opnd_t tbl_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.heap.ivptr));
+ mov(cb, REG0, tbl_opnd);
+
+ // Pop the value to write from the stack
+ x86opnd_t stack_top = ctx_stack_pop(ctx, 1);
+ mov(cb, REG1, stack_top);
+
+ // Bail if this is a heap object, because this needs a write barrier
+ test(cb, REG1, imm_opnd(RUBY_IMMEDIATE_MASK));
+ jz_ptr(cb, side_exit);
+
+ // Write the ivar to the extended table
+ x86opnd_t ivar_opnd = mem_opnd(64, REG0, sizeof(VALUE) * ivar_index);
+ mov(cb, ivar_opnd, REG1);
+
+ return YJIT_KEEP_COMPILING;
+}
+
+// Conditional move operation used by comparison operators
+typedef void (*cmov_fn)(codeblock_t* cb, x86opnd_t opnd0, x86opnd_t opnd1);
+
+static codegen_status_t
+gen_fixnum_cmp(jitstate_t* jit, ctx_t* ctx, cmov_fn cmov_op)
+{
+ // Create a size-exit to fall back to the interpreter
+ // Note: we generate the side-exit before popping operands from the stack
+ uint8_t* side_exit = yjit_side_exit(jit, ctx);
+
+ // TODO: make a helper function for guarding on op-not-redefined
+ // Make sure that minus isn't redefined for integers
+ mov(cb, RAX, const_ptr_opnd(ruby_current_vm_ptr));
+ test(
+ cb,
+ member_opnd_idx(RAX, rb_vm_t, redefined_flag, BOP_LT),
+ imm_opnd(INTEGER_REDEFINED_OP_FLAG)
+ );
+ jnz_ptr(cb, side_exit);
+
+ // Get the operands and destination from the stack
+ int arg1_type = ctx_get_top_type(ctx);
+ x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
+ int arg0_type = ctx_get_top_type(ctx);
+ x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
+
+ // If not fixnums, fall back
+ if (arg0_type != T_FIXNUM) {
+ test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG));
+ jz_ptr(cb, side_exit);
+ }
+ if (arg1_type != T_FIXNUM) {
+ test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG));
+ jz_ptr(cb, side_exit);
+ }
+
+ // Compare the arguments
+ xor(cb, REG0_32, REG0_32); // REG0 = Qfalse
+ mov(cb, REG1, arg0);
+ cmp(cb, REG1, arg1);
+ mov(cb, REG1, imm_opnd(Qtrue));
+ cmov_op(cb, REG0, REG1);
+
+ // Push the output on the stack
+ x86opnd_t dst = ctx_stack_push(ctx, T_NONE);
+ mov(cb, dst, REG0);
+
+ return YJIT_KEEP_COMPILING;
+}
+
+static codegen_status_t
+gen_opt_lt(jitstate_t* jit, ctx_t* ctx)
+{
+ return gen_fixnum_cmp(jit, ctx, cmovl);
+}
+
+static codegen_status_t
+gen_opt_le(jitstate_t* jit, ctx_t* ctx)
+{
+ return gen_fixnum_cmp(jit, ctx, cmovle);
+}
+
+static codegen_status_t
+gen_opt_ge(jitstate_t* jit, ctx_t* ctx)
+{
+ return gen_fixnum_cmp(jit, ctx, cmovge);
+}
+
+static codegen_status_t
+gen_opt_aref(jitstate_t* jit, ctx_t* ctx)
+{
+ struct rb_call_data * cd = (struct rb_call_data *)jit_get_arg(jit, 0);
+ int32_t argc = (int32_t)vm_ci_argc(cd->ci);
+
+ // Only JIT one arg calls like `ary[6]`
+ if (argc != 1) {
+ return YJIT_CANT_COMPILE;
+ }
+
+ const rb_callable_method_entry_t *cme = vm_cc_cme(cd->cc);
+
+ // Bail if the inline cache has been filled. Currently, certain types
+ // (including arrays) don't use the inline cache, so if the inline cache
+ // has an entry, then this must be used by some other type.
+ if (cme) {
+ return YJIT_CANT_COMPILE;
+ }
+
+ // Create a size-exit to fall back to the interpreter
+ uint8_t* side_exit = yjit_side_exit(jit, ctx);
+
+ // TODO: make a helper function for guarding on op-not-redefined
+ // Make sure that aref isn't redefined for arrays.
+ mov(cb, RAX, const_ptr_opnd(ruby_current_vm_ptr));
+ test(
+ cb,
+ member_opnd_idx(RAX, rb_vm_t, redefined_flag, BOP_AREF),
+ imm_opnd(ARRAY_REDEFINED_OP_FLAG)
+ );
+ jnz_ptr(cb, side_exit);
+
+ // Pop the stack operands
+ x86opnd_t idx_opnd = ctx_stack_pop(ctx, 1);
+ x86opnd_t recv_opnd = ctx_stack_pop(ctx, 1);
+ mov(cb, REG0, recv_opnd);
+
+ // if (SPECIAL_CONST_P(recv)) {
+ // Bail if it's not a heap object
+ test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
+ jnz_ptr(cb, side_exit);
+ cmp(cb, REG0, imm_opnd(Qfalse));
+ je_ptr(cb, side_exit);
+ cmp(cb, REG0, imm_opnd(Qnil));
+ je_ptr(cb, side_exit);
+
+ // Bail if recv has a class other than ::Array.
+ // BOP_AREF check above is only good for ::Array.
+ mov(cb, REG1, mem_opnd(64, REG0, offsetof(struct RBasic, klass)));
+ mov(cb, REG0, const_ptr_opnd((void *)rb_cArray));
+ cmp(cb, REG0, REG1);
+ jne_ptr(cb, side_exit);
+
+ // Bail if idx is not a FIXNUM
+ mov(cb, REG1, idx_opnd);
+ test(cb, REG1, imm_opnd(RUBY_FIXNUM_FLAG));
+ jz_ptr(cb, side_exit);
+
+ // Save YJIT registers
+ yjit_save_regs(cb);
+
+ mov(cb, RDI, recv_opnd);
+ sar(cb, REG1, imm_opnd(1)); // Convert fixnum to int
+ mov(cb, RSI, REG1);
+ call_ptr(cb, REG0, (void *)rb_ary_entry_internal);
+
+ // Restore YJIT registers
+ yjit_load_regs(cb);
+
+ x86opnd_t stack_ret = ctx_stack_push(ctx, T_NONE);
+ mov(cb, stack_ret, RAX);
+
+ return YJIT_KEEP_COMPILING;
+}
+
+static codegen_status_t
+gen_opt_and(jitstate_t* jit, ctx_t* ctx)
+{
+ // Create a size-exit to fall back to the interpreter
+ // Note: we generate the side-exit before popping operands from the stack
+ uint8_t* side_exit = yjit_side_exit(jit, ctx);
+
+ // TODO: make a helper function for guarding on op-not-redefined
+ // Make sure that plus isn't redefined for integers
+ mov(cb, RAX, const_ptr_opnd(ruby_current_vm_ptr));
+ test(
+ cb,
+ member_opnd_idx(RAX, rb_vm_t, redefined_flag, BOP_AND),
+ imm_opnd(INTEGER_REDEFINED_OP_FLAG)
+ );
+ jnz_ptr(cb, side_exit);
+
+ // Get the operands and destination from the stack
+ int arg1_type = ctx_get_top_type(ctx);
+ x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
+ int arg0_type = ctx_get_top_type(ctx);
+ x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
+
+ // If not fixnums, fall back
+ if (arg0_type != T_FIXNUM) {
+ test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG));
+ jz_ptr(cb, side_exit);
+ }
+ if (arg1_type != T_FIXNUM) {
+ test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG));
+ jz_ptr(cb, side_exit);
+ }
+
+ // Do the bitwise and arg0 & arg1
+ mov(cb, REG0, arg0);
+ and(cb, REG0, arg1);
+
+ // Push the output on the stack
+ x86opnd_t dst = ctx_stack_push(ctx, T_FIXNUM);
+ mov(cb, dst, REG0);
+
+ return YJIT_KEEP_COMPILING;
+}
+
+static codegen_status_t
+gen_opt_minus(jitstate_t* jit, ctx_t* ctx)
+{
+ // Create a size-exit to fall back to the interpreter
+ // Note: we generate the side-exit before popping operands from the stack
+ uint8_t* side_exit = yjit_side_exit(jit, ctx);
+
+ // TODO: make a helper function for guarding on op-not-redefined
+ // Make sure that minus isn't redefined for integers
+ mov(cb, RAX, const_ptr_opnd(ruby_current_vm_ptr));
+ test(
+ cb,
+ member_opnd_idx(RAX, rb_vm_t, redefined_flag, BOP_MINUS),
+ imm_opnd(INTEGER_REDEFINED_OP_FLAG)
+ );
+ jnz_ptr(cb, side_exit);
+
+ // Get the operands and destination from the stack
+ x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
+ x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
+
+ // If not fixnums, fall back
+ test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG));
+ jz_ptr(cb, side_exit);
+ test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG));
+ jz_ptr(cb, side_exit);
+
+ // Subtract arg0 - arg1 and test for overflow
+ mov(cb, REG0, arg0);
+ sub(cb, REG0, arg1);
+ jo_ptr(cb, side_exit);
+ add(cb, REG0, imm_opnd(1));
+
+ // Push the output on the stack
+ x86opnd_t dst = ctx_stack_push(ctx, T_FIXNUM);
+ mov(cb, dst, REG0);
+
+ return YJIT_KEEP_COMPILING;
+}
+
+static codegen_status_t
+gen_opt_plus(jitstate_t* jit, ctx_t* ctx)
+{
+ // Create a size-exit to fall back to the interpreter
+ // Note: we generate the side-exit before popping operands from the stack
+ uint8_t* side_exit = yjit_side_exit(jit, ctx);
+
+ // TODO: make a helper function for guarding on op-not-redefined
+ // Make sure that plus isn't redefined for integers
+ mov(cb, RAX, const_ptr_opnd(ruby_current_vm_ptr));
+ test(
+ cb,
+ member_opnd_idx(RAX, rb_vm_t, redefined_flag, BOP_PLUS),
+ imm_opnd(INTEGER_REDEFINED_OP_FLAG)
+ );
+ jnz_ptr(cb, side_exit);
+
+ // Get the operands and destination from the stack
+ int arg1_type = ctx_get_top_type(ctx);
+ x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
+ int arg0_type = ctx_get_top_type(ctx);
+ x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
+
+ // If not fixnums, fall back
+ if (arg0_type != T_FIXNUM) {
+ test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG));
+ jz_ptr(cb, side_exit);
+ }
+ if (arg1_type != T_FIXNUM) {
+ test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG));
+ jz_ptr(cb, side_exit);
+ }
+
+ // Add arg0 + arg1 and test for overflow
+ mov(cb, REG0, arg0);
+ sub(cb, REG0, imm_opnd(1));
+ add(cb, REG0, arg1);
+ jo_ptr(cb, side_exit);
+
+ // Push the output on the stack
+ x86opnd_t dst = ctx_stack_push(ctx, T_FIXNUM);
+ mov(cb, dst, REG0);
+
+ return YJIT_KEEP_COMPILING;
+}
+
+void
+gen_branchif_branch(codeblock_t* cb, uint8_t* target0, uint8_t* target1, uint8_t shape)
+{
+ switch (shape)
+ {
+ case SHAPE_NEXT0:
+ jz_ptr(cb, target1);
+ break;
+
+ case SHAPE_NEXT1:
+ jnz_ptr(cb, target0);
+ break;
+
+ case SHAPE_DEFAULT:
+ jnz_ptr(cb, target0);
+ jmp_ptr(cb, target1);
+ break;
+ }
+}
+
+static codegen_status_t
+gen_branchif(jitstate_t* jit, ctx_t* ctx)
+{
+ // FIXME: eventually, put VM_CHECK_INTS() only on backward branch targets
+ // Check for interrupts
+ uint8_t* side_exit = yjit_side_exit(jit, ctx);
+ yjit_check_ints(cb, side_exit);
+
+ // Test if any bit (outside of the Qnil bit) is on
+ // RUBY_Qfalse /* ...0000 0000 */
+ // RUBY_Qnil /* ...0000 1000 */
+ x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
+ test(cb, val_opnd, imm_opnd(~Qnil));
+
+ // Get the branch target instruction offsets
+ uint32_t next_idx = jit_next_idx(jit);
+ uint32_t jump_idx = next_idx + (uint32_t)jit_get_arg(jit, 0);
+ blockid_t next_block = { jit->iseq, next_idx };
+ blockid_t jump_block = { jit->iseq, jump_idx };
+
+ // Generate the branch instructions
+ gen_branch(
+ ctx,
+ jump_block,
+ ctx,
+ next_block,
+ ctx,
+ gen_branchif_branch
+ );
+
+ return YJIT_END_BLOCK;
+}
+
+void
+gen_branchunless_branch(codeblock_t* cb, uint8_t* target0, uint8_t* target1, uint8_t shape)
+{
+ switch (shape)
+ {
+ case SHAPE_NEXT0:
+ jnz_ptr(cb, target1);
+ break;
+
+ case SHAPE_NEXT1:
+ jz_ptr(cb, target0);
+ break;
+
+ case SHAPE_DEFAULT:
+ jz_ptr(cb, target0);
+ jmp_ptr(cb, target1);
+ break;
+ }
+}
+
+static codegen_status_t
+gen_branchunless(jitstate_t* jit, ctx_t* ctx)
+{
+ // FIXME: eventually, put VM_CHECK_INTS() only on backward branch targets
+ // Check for interrupts
+ uint8_t* side_exit = yjit_side_exit(jit, ctx);
+ yjit_check_ints(cb, side_exit);
+
+ // Test if any bit (outside of the Qnil bit) is on
+ // RUBY_Qfalse /* ...0000 0000 */
+ // RUBY_Qnil /* ...0000 1000 */
+ x86opnd_t val_opnd = ctx_stack_pop(ctx, 1);
+ test(cb, val_opnd, imm_opnd(~Qnil));
+
+ // Get the branch target instruction offsets
+ uint32_t next_idx = jit_next_idx(jit);
+ uint32_t jump_idx = next_idx + (uint32_t)jit_get_arg(jit, 0);
+ blockid_t next_block = { jit->iseq, next_idx };
+ blockid_t jump_block = { jit->iseq, jump_idx };
+
+ // Generate the branch instructions
+ gen_branch(
+ ctx,
+ jump_block,
+ ctx,
+ next_block,
+ ctx,
+ gen_branchunless_branch
+ );
+
+ return YJIT_END_BLOCK;
+}
+
+static codegen_status_t
+gen_jump(jitstate_t* jit, ctx_t* ctx)
+{
+ // FIXME: eventually, put VM_CHECK_INTS() only on backward branch targets
+ // Check for interrupts
+ uint8_t* side_exit = yjit_side_exit(jit, ctx);
+ yjit_check_ints(cb, side_exit);
+
+ // Get the branch target instruction offsets
+ uint32_t jump_idx = jit_next_idx(jit) + (int32_t)jit_get_arg(jit, 0);
+ blockid_t jump_block = { jit->iseq, jump_idx };
+
+ // Generate the jump instruction
+ gen_direct_jump(
+ ctx,
+ jump_block
+ );
+
+ return YJIT_END_BLOCK;
+}
+
+static void
+jit_protected_guard(jitstate_t *jit, codeblock_t *cb, const rb_callable_method_entry_t *cme, uint8_t *side_exit)
+{
+ // Callee is protected. Generate ancestry guard.
+ // See vm_call_method().
+ yjit_save_regs(cb);
+ mov(cb, C_ARG_REGS[0], member_opnd(REG_CFP, rb_control_frame_t, self));
+ jit_mov_gc_ptr(jit, cb, C_ARG_REGS[1], cme->defined_class);
+ // Note: PC isn't written to current control frame as rb_is_kind_of() shouldn't raise.
+ // VALUE rb_obj_is_kind_of(VALUE obj, VALUE klass);
+ call_ptr(cb, REG0, (void *)&rb_obj_is_kind_of);
+ yjit_load_regs(cb);
+ test(cb, RAX, RAX);
+ jz_ptr(cb, COUNTED_EXIT(side_exit, oswb_se_protected_check_failed));
+}
+
+static bool
+gen_oswb_cfunc(jitstate_t* jit, ctx_t* ctx, struct rb_call_data * cd, const rb_callable_method_entry_t *cme, int32_t argc)
+{
+ const rb_method_cfunc_t *cfunc = UNALIGNED_MEMBER_PTR(cme->def, body.cfunc);
+
+ // If the function expects a Ruby array of arguments
+ if (cfunc->argc < 0 && cfunc->argc != -1)
+ {
+ GEN_COUNTER_INC(cb, oswb_cfunc_ruby_array_varg);
+ return YJIT_CANT_COMPILE;
+ }
+
+ // If the argument count doesn't match
+ if (cfunc->argc >= 0 && cfunc->argc != argc)
+ {
+ GEN_COUNTER_INC(cb, oswb_cfunc_argc_mismatch);
+ return YJIT_CANT_COMPILE;
+ }
+
+ // Don't JIT functions that need C stack arguments for now
+ if (argc + 1 > NUM_C_ARG_REGS) {
+ GEN_COUNTER_INC(cb, oswb_cfunc_toomany_args);
+ return YJIT_CANT_COMPILE;
+ }
+
+ // Create a size-exit to fall back to the interpreter
+ uint8_t *side_exit = yjit_side_exit(jit, ctx);
+
+ // Check for interrupts
+ yjit_check_ints(cb, side_exit);
+
+ // Points to the receiver operand on the stack
+ x86opnd_t recv = ctx_stack_opnd(ctx, argc);
+ mov(cb, REG0, recv);
+
+ // Callee method ID
+ //ID mid = vm_ci_mid(cd->ci);
+ //printf("JITting call to C function \"%s\", argc: %lu\n", rb_id2name(mid), argc);
+ //print_str(cb, "");
+ //print_str(cb, "calling CFUNC:");
+ //print_str(cb, rb_id2name(mid));
+ //print_str(cb, "recv");
+ //print_ptr(cb, recv);
+
+ // Check that the receiver is a heap object
+ {
+ uint8_t *receiver_not_heap = COUNTED_EXIT(side_exit, oswb_se_receiver_not_heap);
+ test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
+ jnz_ptr(cb, receiver_not_heap);
+ cmp(cb, REG0, imm_opnd(Qfalse));
+ je_ptr(cb, receiver_not_heap);
+ cmp(cb, REG0, imm_opnd(Qnil));
+ je_ptr(cb, receiver_not_heap);
+ }
+
+ // Pointer to the klass field of the receiver &(recv->klass)
+ x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass));
+
+ // FIXME: This leaks when st_insert raises NoMemoryError
+ assume_method_lookup_stable(cd->cc, cme, jit->block);
+
+ // Bail if receiver class is different from compile-time call cache class
+ jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cd->cc->klass);
+ cmp(cb, klass_opnd, REG1);
+ jne_ptr(cb, COUNTED_EXIT(side_exit, oswb_se_cc_klass_differ));
+
+ // Store incremented PC into current control frame in case callee raises.
+ mov(cb, REG0, const_ptr_opnd(jit->pc + insn_len(BIN(opt_send_without_block))));
+ mov(cb, mem_opnd(64, REG_CFP, offsetof(rb_control_frame_t, pc)), REG0);
+
+ if (METHOD_ENTRY_VISI(cme) == METHOD_VISI_PROTECTED) {
+ // Generate ancestry guard for protected callee.
+ jit_protected_guard(jit, cb, cme, side_exit);
+ }
+
+ // If this function needs a Ruby stack frame
+ if (cfunc_needs_frame(cfunc))
+ {
+ // Stack overflow check
+ // #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin)
+ // REG_CFP <= REG_SP + 4 * sizeof(VALUE) + sizeof(rb_control_frame_t)
+ lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * 4 + sizeof(rb_control_frame_t)));
+ cmp(cb, REG_CFP, REG0);
+ jle_ptr(cb, COUNTED_EXIT(side_exit, oswb_se_cf_overflow));
+
+ // Increment the stack pointer by 3 (in the callee)
+ // sp += 3
+ lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * 3));
+
+ // Put compile time cme into REG1. It's assumed to be valid because we are notified when
+ // any cme we depend on become outdated. See rb_yjit_method_lookup_change().
+ jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cme);
+ // Write method entry at sp[-3]
+ // sp[-3] = me;
+ mov(cb, mem_opnd(64, REG0, 8 * -3), REG1);
+
+ // Write block handler at sp[-2]
+ // sp[-2] = block_handler;
+ mov(cb, mem_opnd(64, REG0, 8 * -2), imm_opnd(VM_BLOCK_HANDLER_NONE));
+
+ // Write env flags at sp[-1]
+ // sp[-1] = frame_type;
+ uint64_t frame_type = VM_FRAME_MAGIC_CFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL;
+ mov(cb, mem_opnd(64, REG0, 8 * -1), imm_opnd(frame_type));
+
+ // Allocate a new CFP (ec->cfp--)
+ sub(
+ cb,
+ member_opnd(REG_EC, rb_execution_context_t, cfp),
+ imm_opnd(sizeof(rb_control_frame_t))
+ );
+
+ // Setup the new frame
+ // *cfp = (const struct rb_control_frame_struct) {
+ // .pc = 0,
+ // .sp = sp,
+ // .iseq = 0,
+ // .self = recv,
+ // .ep = sp - 1,
+ // .block_code = 0,
+ // .__bp__ = sp,
+ // };
+ mov(cb, REG1, member_opnd(REG_EC, rb_execution_context_t, cfp));
+ mov(cb, member_opnd(REG1, rb_control_frame_t, pc), imm_opnd(0));
+ mov(cb, member_opnd(REG1, rb_control_frame_t, sp), REG0);
+ mov(cb, member_opnd(REG1, rb_control_frame_t, iseq), imm_opnd(0));
+ mov(cb, member_opnd(REG1, rb_control_frame_t, block_code), imm_opnd(0));
+ mov(cb, member_opnd(REG1, rb_control_frame_t, __bp__), REG0);
+ sub(cb, REG0, imm_opnd(sizeof(VALUE)));
+ mov(cb, member_opnd(REG1, rb_control_frame_t, ep), REG0);
+ mov(cb, REG0, recv);
+ mov(cb, member_opnd(REG1, rb_control_frame_t, self), REG0);
+ }
+
+ // Verify that we are calling the right function
+ if (YJIT_CHECK_MODE > 0) {
+ // Save YJIT registers
+ yjit_save_regs(cb);
+
+ // Call check_cfunc_dispatch
+ mov(cb, RDI, recv);
+ jit_mov_gc_ptr(jit, cb, RSI, (VALUE)cd);
+ mov(cb, RDX, const_ptr_opnd((void *)cfunc->func));
+ jit_mov_gc_ptr(jit, cb, RCX, (VALUE)cme);
+ call_ptr(cb, REG0, (void *)&check_cfunc_dispatch);
+
+ // Load YJIT registers
+ yjit_load_regs(cb);
+ }
+
+ // Save YJIT registers
+ yjit_save_regs(cb);
+
+ // Copy SP into RAX because REG_SP will get overwritten
+ lea(cb, RAX, ctx_sp_opnd(ctx, 0));
+
+ // Non-variadic method
+ if (cfunc->argc >= 0)
+ {
+ // Copy the arguments from the stack to the C argument registers
+ // self is the 0th argument and is at index argc from the stack top
+ for (int32_t i = 0; i < argc + 1; ++i)
+ {
+ x86opnd_t stack_opnd = mem_opnd(64, RAX, -(argc + 1 - i) * SIZEOF_VALUE);
+ x86opnd_t c_arg_reg = C_ARG_REGS[i];
+ mov(cb, c_arg_reg, stack_opnd);
+ }
+ }
+ // Variadic method
+ if (cfunc->argc == -1)
+ {
+ // The method gets a pointer to the first argument
+ // rb_f_puts(int argc, VALUE *argv, VALUE recv)
+ mov(cb, C_ARG_REGS[0], imm_opnd(argc));
+ lea(cb, C_ARG_REGS[1], mem_opnd(64, RAX, -(argc) * SIZEOF_VALUE));
+ mov(cb, C_ARG_REGS[2], mem_opnd(64, RAX, -(argc + 1) * SIZEOF_VALUE));
+ }
+
+ // Pop the C function arguments from the stack (in the caller)
+ ctx_stack_pop(ctx, argc + 1);
+
+ // Call the C function
+ // VALUE ret = (cfunc->func)(recv, argv[0], argv[1]);
+ // cfunc comes from compile-time cme->def, which we assume to be stable.
+ // Invalidation logic is in rb_yjit_method_lookup_change()
+ call_ptr(cb, REG0, (void*)cfunc->func);
+
+ // Load YJIT registers
+ yjit_load_regs(cb);
+
+ // Push the return value on the Ruby stack
+ x86opnd_t stack_ret = ctx_stack_push(ctx, T_NONE);
+ mov(cb, stack_ret, RAX);
+
+ // If this function needs a Ruby stack frame
+ if (cfunc_needs_frame(cfunc))
+ {
+ // Pop the stack frame (ec->cfp++)
+ add(
+ cb,
+ member_opnd(REG_EC, rb_execution_context_t, cfp),
+ imm_opnd(sizeof(rb_control_frame_t))
+ );
+ }
+
+ // Jump (fall through) to the call continuation block
+ // We do this to end the current block after the call
+ blockid_t cont_block = { jit->iseq, jit_next_idx(jit) };
+ gen_direct_jump(
+ ctx,
+ cont_block
+ );
+
+ return YJIT_END_BLOCK;
+}
+
+bool rb_simple_iseq_p(const rb_iseq_t *iseq);
+
+static void
+gen_return_branch(codeblock_t* cb, uint8_t* target0, uint8_t* target1, uint8_t shape)
+{
+ switch (shape)
+ {
+ case SHAPE_NEXT0:
+ case SHAPE_NEXT1:
+ RUBY_ASSERT(false);
+ break;
+
+ case SHAPE_DEFAULT:
+ mov(cb, REG0, const_ptr_opnd(target0));
+ mov(cb, member_opnd(REG_CFP, rb_control_frame_t, jit_return), REG0);
+ break;
+ }
+}
+
+static codegen_status_t
+gen_oswb_iseq(jitstate_t* jit, ctx_t* ctx, struct rb_call_data * cd, const rb_callable_method_entry_t *cme, int32_t argc)
+{
+ const rb_iseq_t *iseq = def_iseq_ptr(cme->def);
+ const VALUE* start_pc = iseq->body->iseq_encoded;
+ int num_params = iseq->body->param.size;
+ int num_locals = iseq->body->local_table_size - num_params;
+
+ if (num_params != argc) {
+ GEN_COUNTER_INC(cb, oswb_iseq_argc_mismatch);
+ return YJIT_CANT_COMPILE;
+ }
+
+ if (!rb_simple_iseq_p(iseq)) {
+ // Only handle iseqs that have simple parameters.
+ // See vm_callee_setup_arg().
+ GEN_COUNTER_INC(cb, oswb_iseq_not_simple);
+ return YJIT_CANT_COMPILE;
+ }
+
+ if (vm_ci_flag(cd->ci) & VM_CALL_TAILCALL) {
+ // We can't handle tailcalls
+ GEN_COUNTER_INC(cb, oswb_iseq_tailcall);
+ return YJIT_CANT_COMPILE;
+ }
+
+ // Create a size-exit to fall back to the interpreter
+ uint8_t* side_exit = yjit_side_exit(jit, ctx);
+
+ // Check for interrupts
+ yjit_check_ints(cb, side_exit);
+
+ // Points to the receiver operand on the stack
+ x86opnd_t recv = ctx_stack_opnd(ctx, argc);
+ mov(cb, REG0, recv);
+
+ // Callee method ID
+ //ID mid = vm_ci_mid(cd->ci);
+ //printf("JITting call to Ruby function \"%s\", argc: %d\n", rb_id2name(mid), argc);
+ //print_str(cb, "");
+ //print_str(cb, "recv");
+ //print_ptr(cb, recv);
+
+ // Check that the receiver is a heap object
+ {
+ uint8_t *receiver_not_heap = COUNTED_EXIT(side_exit, oswb_se_receiver_not_heap);
+ test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK));
+ jnz_ptr(cb, receiver_not_heap);
+ cmp(cb, REG0, imm_opnd(Qfalse));
+ je_ptr(cb, receiver_not_heap);
+ cmp(cb, REG0, imm_opnd(Qnil));
+ je_ptr(cb, receiver_not_heap);
+ }
+
+ // Pointer to the klass field of the receiver &(recv->klass)
+ x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass));
+
+ assume_method_lookup_stable(cd->cc, cme, jit->block);
+
+ // Bail if receiver class is different from compile-time call cache class
+ jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cd->cc->klass);
+ cmp(cb, klass_opnd, REG1);
+ jne_ptr(cb, COUNTED_EXIT(side_exit, oswb_se_cc_klass_differ));
+
+ if (METHOD_ENTRY_VISI(cme) == METHOD_VISI_PROTECTED) {
+ // Generate ancestry guard for protected callee.
+ jit_protected_guard(jit, cb, cme, side_exit);
+ }
+
+ // Store the updated SP on the current frame (pop arguments and receiver)
+ lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * -(argc + 1)));
+ mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG0);
+
+ // Store the next PC i the current frame
+ mov(cb, REG0, const_ptr_opnd(jit->pc + insn_len(BIN(opt_send_without_block))));
+ mov(cb, mem_opnd(64, REG_CFP, offsetof(rb_control_frame_t, pc)), REG0);
+
+ // Stack overflow check
+ // #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin)
+ lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * (num_locals + iseq->body->stack_max) + sizeof(rb_control_frame_t)));
+ cmp(cb, REG_CFP, REG0);
+ jle_ptr(cb, COUNTED_EXIT(side_exit, oswb_se_cf_overflow));
+
+ // Adjust the callee's stack pointer
+ lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * (3 + num_locals)));
+
+ // Initialize local variables to Qnil
+ for (int i = 0; i < num_locals; i++) {
+ mov(cb, mem_opnd(64, REG0, sizeof(VALUE) * (i - num_locals - 3)), imm_opnd(Qnil));
+ }
+
+ // Put compile time cme into REG1. It's assumed to be valid because we are notified when
+ // any cme we depend on become outdated. See rb_yjit_method_lookup_change().
+ jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cme);
+ // Write method entry at sp[-3]
+ // sp[-3] = me;
+ mov(cb, mem_opnd(64, REG0, 8 * -3), REG1);
+
+ // Write block handler at sp[-2]
+ // sp[-2] = block_handler;
+ mov(cb, mem_opnd(64, REG0, 8 * -2), imm_opnd(VM_BLOCK_HANDLER_NONE));
+
+ // Write env flags at sp[-1]
+ // sp[-1] = frame_type;
+ uint64_t frame_type = VM_FRAME_MAGIC_METHOD | VM_ENV_FLAG_LOCAL;
+ mov(cb, mem_opnd(64, REG0, 8 * -1), imm_opnd(frame_type));
+
+ // Allocate a new CFP (ec->cfp--)
+ sub(cb, REG_CFP, imm_opnd(sizeof(rb_control_frame_t)));
+ mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP);
+
+ // Setup the new frame
+ // *cfp = (const struct rb_control_frame_struct) {
+ // .pc = pc,
+ // .sp = sp,
+ // .iseq = iseq,
+ // .self = recv,
+ // .ep = sp - 1,
+ // .block_code = 0,
+ // .__bp__ = sp,
+ // };
+ mov(cb, member_opnd(REG_CFP, rb_control_frame_t, block_code), imm_opnd(0));
+ mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG0);
+ mov(cb, member_opnd(REG_CFP, rb_control_frame_t, __bp__), REG0);
+ sub(cb, REG0, imm_opnd(sizeof(VALUE)));
+ mov(cb, member_opnd(REG_CFP, rb_control_frame_t, ep), REG0);
+ mov(cb, REG0, recv);
+ mov(cb, member_opnd(REG_CFP, rb_control_frame_t, self), REG0);
+ jit_mov_gc_ptr(jit, cb, REG0, (VALUE)iseq);
+ mov(cb, member_opnd(REG_CFP, rb_control_frame_t, iseq), REG0);
+ mov(cb, REG0, const_ptr_opnd(start_pc));
+ mov(cb, member_opnd(REG_CFP, rb_control_frame_t, pc), REG0);
+
+ // Stub so we can return to JITted code
+ blockid_t return_block = { jit->iseq, jit_next_insn_idx(jit) };
+
+ // Pop arguments and receiver in return context, push the return value
+ // After the return, the JIT and interpreter SP will match up
+ ctx_t return_ctx = *ctx;
+ ctx_stack_pop(&return_ctx, argc + 1);
+ ctx_stack_push(&return_ctx, T_NONE);
+ return_ctx.sp_offset = 0;
+
+ // Write the JIT return address on the callee frame
+ gen_branch(
+ ctx,
+ return_block,
+ &return_ctx,
+ return_block,
+ &return_ctx,
+ gen_return_branch
+ );
+
+ //print_str(cb, "calling Ruby func:");
+ //print_str(cb, rb_id2name(vm_ci_mid(cd->ci)));
+
+ // Load the updated SP
+ mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp));
+
+ // Directly jump to the entry point of the callee
+ gen_direct_jump(
+ &DEFAULT_CTX,
+ (blockid_t){ iseq, 0 }
+ );
+
+ return true;
+}
+
+static codegen_status_t
+gen_opt_send_without_block(jitstate_t* jit, ctx_t* ctx)
+{
+ // Relevant definitions:
+ // rb_execution_context_t : vm_core.h
+ // invoker, cfunc logic : method.h, vm_method.c
+ // rb_callable_method_entry_t : method.h
+ // vm_call_cfunc_with_frame : vm_insnhelper.c
+ // rb_callcache : vm_callinfo.h
+
+ struct rb_call_data * cd = (struct rb_call_data *)jit_get_arg(jit, 0);
+ int32_t argc = (int32_t)vm_ci_argc(cd->ci);
+
+ // Don't JIT calls with keyword splat
+ if (vm_ci_flag(cd->ci) & VM_CALL_KW_SPLAT) {
+ GEN_COUNTER_INC(cb, oswb_kw_splat);
+ return YJIT_CANT_COMPILE;
+ }
+
+ // Don't JIT calls that aren't simple
+ if (!(vm_ci_flag(cd->ci) & VM_CALL_ARGS_SIMPLE)) {
+ GEN_COUNTER_INC(cb, oswb_callsite_not_simple);
+ return YJIT_CANT_COMPILE;
+ }
+
+ // Don't JIT if the inline cache is not set
+ if (!cd->cc || !cd->cc->klass) {
+ GEN_COUNTER_INC(cb, oswb_ic_empty);
+ return YJIT_CANT_COMPILE;
+ }
+
+ const rb_callable_method_entry_t *cme = vm_cc_cme(cd->cc);
+
+ // Don't JIT if the method entry is out of date
+ if (METHOD_ENTRY_INVALIDATED(cme)) {
+ GEN_COUNTER_INC(cb, oswb_invalid_cme);
+ return YJIT_CANT_COMPILE;
+ }
+
+ switch (cme->def->type) {
+ case VM_METHOD_TYPE_ISEQ:
+ return gen_oswb_iseq(jit, ctx, cd, cme, argc);
+ case VM_METHOD_TYPE_CFUNC:
+ return gen_oswb_cfunc(jit, ctx, cd, cme, argc);
+ case VM_METHOD_TYPE_ATTRSET:
+ GEN_COUNTER_INC(cb, oswb_ivar_set_method);
+ return YJIT_CANT_COMPILE;
+ case VM_METHOD_TYPE_BMETHOD:
+ GEN_COUNTER_INC(cb, oswb_bmethod);
+ return YJIT_CANT_COMPILE;
+ case VM_METHOD_TYPE_IVAR:
+ GEN_COUNTER_INC(cb, oswb_ivar_get_method);
+ return YJIT_CANT_COMPILE;
+ case VM_METHOD_TYPE_ZSUPER:
+ GEN_COUNTER_INC(cb, oswb_zsuper_method);
+ return YJIT_CANT_COMPILE;
+ case VM_METHOD_TYPE_ALIAS:
+ GEN_COUNTER_INC(cb, oswb_alias_method);
+ return YJIT_CANT_COMPILE;
+ case VM_METHOD_TYPE_UNDEF:
+ GEN_COUNTER_INC(cb, oswb_undef_method);
+ return YJIT_CANT_COMPILE;
+ case VM_METHOD_TYPE_NOTIMPLEMENTED:
+ GEN_COUNTER_INC(cb, oswb_not_implemented_method);
+ return YJIT_CANT_COMPILE;
+ case VM_METHOD_TYPE_OPTIMIZED:
+ GEN_COUNTER_INC(cb, oswb_optimized_method);
+ return YJIT_CANT_COMPILE;
+ case VM_METHOD_TYPE_MISSING:
+ GEN_COUNTER_INC(cb, oswb_missing_method);
+ return YJIT_CANT_COMPILE;
+ case VM_METHOD_TYPE_REFINED:
+ GEN_COUNTER_INC(cb, oswb_refined_method);
+ return YJIT_CANT_COMPILE;
+ // no default case so compiler issues a warning if this is not exhaustive
+ }
+}
+
+static codegen_status_t
+gen_leave(jitstate_t* jit, ctx_t* ctx)
+{
+ // Only the return value should be on the stack
+ RUBY_ASSERT(ctx->stack_size == 1);
+
+ // Create a size-exit to fall back to the interpreter
+ uint8_t* side_exit = yjit_side_exit(jit, ctx);
+
+ // Load environment pointer EP from CFP
+ mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep));
+
+ // if (flags & VM_FRAME_FLAG_FINISH) != 0
+ x86opnd_t flags_opnd = mem_opnd(64, REG0, sizeof(VALUE) * VM_ENV_DATA_INDEX_FLAGS);
+ test(cb, flags_opnd, imm_opnd(VM_FRAME_FLAG_FINISH));
+ jnz_ptr(cb, COUNTED_EXIT(side_exit, leave_se_finish_frame));
+
+ // Check for interrupts
+ yjit_check_ints(cb, COUNTED_EXIT(side_exit, leave_se_interrupt));
+
+ // Load the return value
+ mov(cb, REG0, ctx_stack_pop(ctx, 1));
+
+ // Load the JIT return address
+ mov(cb, REG1, member_opnd(REG_CFP, rb_control_frame_t, jit_return));
+
+ // Pop the current frame (ec->cfp++)
+ // Note: the return PC is already in the previous CFP
+ add(cb, REG_CFP, imm_opnd(sizeof(rb_control_frame_t)));
+ mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP);
+
+ // Push the return value on the caller frame
+ // The SP points one above the topmost value
+ add(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), imm_opnd(SIZEOF_VALUE));
+ mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp));
+ mov(cb, mem_opnd(64, REG_SP, -SIZEOF_VALUE), REG0);
+
+ // If the return address is NULL, fall back to the interpreter
+ int FALLBACK_LABEL = cb_new_label(cb, "FALLBACK");
+ test(cb, REG1, REG1);
+ jz_label(cb, FALLBACK_LABEL);
+
+ // Jump to the JIT return address
+ jmp_rm(cb, REG1);
+
+ // Fall back to the interpreter
+ cb_write_label(cb, FALLBACK_LABEL);
+ cb_link_labels(cb);
+ cb_write_post_call_bytes(cb);
+
+ return YJIT_END_BLOCK;
+}
+
+RUBY_EXTERN rb_serial_t ruby_vm_global_constant_state;
+static codegen_status_t
+gen_opt_getinlinecache(jitstate_t *jit, ctx_t *ctx)
+{
+ VALUE jump_offset = jit_get_arg(jit, 0);
+ VALUE const_cache_as_value = jit_get_arg(jit, 1);
+ IC ic = (IC)const_cache_as_value;
+
+ // See vm_ic_hit_p().
+ struct iseq_inline_constant_cache_entry *ice = ic->entry;
+ if (!ice) {
+ // Cache not filled
+ return YJIT_CANT_COMPILE;
+ }
+ if (ice->ic_serial != ruby_vm_global_constant_state) {
+ // Cache miss at compile time.
+ return YJIT_CANT_COMPILE;
+ }
+ if (ice->ic_cref) {
+ // Only compile for caches that don't care about lexical scope.
+ return YJIT_CANT_COMPILE;
+ }
+
+ // Optimize for single ractor mode.
+ // FIXME: This leaks when st_insert raises NoMemoryError
+ if (!assume_single_ractor_mode(jit->block)) return YJIT_CANT_COMPILE;
+
+ // Invalidate output code on any and all constant writes
+ // FIXME: This leaks when st_insert raises NoMemoryError
+ if (!assume_stable_global_constant_state(jit->block)) return YJIT_CANT_COMPILE;
+
+ x86opnd_t stack_top = ctx_stack_push(ctx, T_NONE);
+ jit_mov_gc_ptr(jit, cb, REG0, ice->value);
+ mov(cb, stack_top, REG0);
+
+ // Jump over the code for filling the cache
+ uint32_t jump_idx = jit_next_insn_idx(jit) + (int32_t)jump_offset;
+ gen_direct_jump(
+ ctx,
+ (blockid_t){ .iseq = jit->iseq, .idx = jump_idx }
+ );
+
+ return YJIT_END_BLOCK;
+}
+
+void yjit_reg_op(int opcode, codegen_fn gen_fn)
+{
+ // Check that the op wasn't previously registered
+ st_data_t st_gen;
+ if (rb_st_lookup(gen_fns, opcode, &st_gen)) {
+ rb_bug("op already registered");
+ }
+
+ st_insert(gen_fns, (st_data_t)opcode, (st_data_t)gen_fn);
+}
+
+void
+yjit_init_codegen(void)
+{
+ // Initialize the code blocks
+ uint32_t mem_size = 128 * 1024 * 1024;
+ uint8_t* mem_block = alloc_exec_mem(mem_size);
+ cb = &block;
+ cb_init(cb, mem_block, mem_size/2);
+ ocb = &outline_block;
+ cb_init(ocb, mem_block + mem_size/2, mem_size/2);
+
+ // Initialize the codegen function table
+ gen_fns = rb_st_init_numtable();
+
+ // Map YARV opcodes to the corresponding codegen functions
+ yjit_reg_op(BIN(dup), gen_dup);
+ yjit_reg_op(BIN(nop), gen_nop);
+ yjit_reg_op(BIN(pop), gen_pop);
+ yjit_reg_op(BIN(putnil), gen_putnil);
+ yjit_reg_op(BIN(putobject), gen_putobject);
+ yjit_reg_op(BIN(putobject_INT2FIX_0_), gen_putobject_int2fix);
+ yjit_reg_op(BIN(putobject_INT2FIX_1_), gen_putobject_int2fix);
+ yjit_reg_op(BIN(putself), gen_putself);
+ yjit_reg_op(BIN(getlocal_WC_0), gen_getlocal_wc0);
+ yjit_reg_op(BIN(getlocal_WC_1), gen_getlocal_wc1);
+ yjit_reg_op(BIN(setlocal_WC_0), gen_setlocal_wc0);
+ yjit_reg_op(BIN(getinstancevariable), gen_getinstancevariable);
+ yjit_reg_op(BIN(setinstancevariable), gen_setinstancevariable);
+ yjit_reg_op(BIN(opt_lt), gen_opt_lt);
+ yjit_reg_op(BIN(opt_le), gen_opt_le);
+ yjit_reg_op(BIN(opt_ge), gen_opt_ge);
+ yjit_reg_op(BIN(opt_aref), gen_opt_aref);
+ yjit_reg_op(BIN(opt_and), gen_opt_and);
+ yjit_reg_op(BIN(opt_minus), gen_opt_minus);
+ yjit_reg_op(BIN(opt_plus), gen_opt_plus);
+
+ // Map branch instruction opcodes to codegen functions
+ yjit_reg_op(BIN(opt_getinlinecache), gen_opt_getinlinecache);
+ yjit_reg_op(BIN(branchif), gen_branchif);
+ yjit_reg_op(BIN(branchunless), gen_branchunless);
+ yjit_reg_op(BIN(jump), gen_jump);
+ yjit_reg_op(BIN(opt_send_without_block), gen_opt_send_without_block);
+ yjit_reg_op(BIN(leave), gen_leave);
+}